簡易檢索 / 詳目顯示

研究生: 陳鼎鈞
Ding-Jyun Chen
論文名稱: 單晶碳化矽基板之鑽石研光與化學機械拋光 平坦化製程研究
Research on Diamond Lapping and Chemical Mechanical Polishing of Single Crystalline Silicon Carbide Substrate
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊宏智
Hong-Tsu Young
鍾俊輝
Chun-Hui Chung
康來成
none
楊敏聰
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 159
中文關鍵詞: 4H單晶碳化矽基板鑽石研光材料移除率複合式能量化學機械拋光
外文關鍵詞: Single-Crystalline Silicon Carbide (SiC), Diamond Lapping, Material Removal Rate (MRR), Hybrid-Energy Chemical Mechanical Polishing (HEC
相關次數: 點閱:478下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單晶碳化矽基板(Silicon Carbide, SiC)在功率元件市場的潛力極大,但單晶碳化矽基板因高硬度及抗化學性等特質,造成製造過程面臨加工時間冗長等問題。本研究主要研究4H單晶碳化矽基板的研光(Lapping)與化學機械拋光(Chemical Mechanical Polishing, CMP)兩製程,以降低製程時間。研光製程中製作一樹酯銅鐵研光盤,並加入過氧化氫於鑽石研光液中,使4H單晶碳化矽基板在研光時產生OH自由基,再生成反應層,此反應層硬度較4H單晶碳化矽基板軟,最後透過鑽石磨料以機械方式移除材料。第二部分以本實驗室建構之複合式能量化學機械拋光系統(Hybrid-Energy Chemical Mechanical Polishing, HECMP)進行拋光,此系統將氧氣導入製程設備腔體,以提升拋光液及製程空間的含氧量,增加化學反應的速率,達到較高效率之拋光製程。本研究結果於兩吋單晶碳化矽基板應用 於樹酯銅鐵研光盤搭配添加過氧化氫之鑽石液之研光方式較一般傳統研光效率提升17 %,並透過接觸角、維克氏硬度與X-ray光電子能譜,驗證表面產生較軟之二氧化矽反應層。HECMP中兩吋單晶碳化矽基板拋光效率較CMP提升19 %,並透過實驗結果,建立一材料移除率模型,最後以四吋4H單晶碳化矽,應用本論文研光方式與HECMP,比較一般研光與化學機械拋光整合後之加工效率,本論文所提出之整合方法可降低29 %的製程時間,達成降低製程時間之目標。未來研究可著重於試量產製程之研發測試。


    Single crystalline Silicon Carbide (SiC) substrate has a great potential for application in power devices. Due to silicon carbide substrate has great mechanical property and needs long processing times of manufacture. This study focuses on enhancing material removal rate of diamond lapping and Chemical Mechanical Polishing (CMP) processes of 4H single crystalline silicon carbide wafer of 2 inch and 4 inch. First, a new resin iron copper platen has been modified and hydrogen peroxide is adding in diamond slurry for the lapping process to induce 4H-SiC oxided on surface and then removing such reaction layer by diamond abrasive in lapping process. A Hybrid Energy Chemical Mechanical Polishing (HECMP) method with adjustable high oxygen concentration has been developed into CMP tool chamber gas regulating device. High oxygen content can enhance the chemical reaction and to achieve high efficiency of planarization. From experimental result, the surface had obtained reaction layer and verified by contact angle test, Vickers hardness and X-ray photoelectron spectroscopy (XPS). Efficiency of 2 inch SiC wafer of new resin iron copper platen with hydrogen peroxide can increase 17 % than normal. In HECMP, the efficiency of 2 inch SiC had raised 19 % than normal CMP. A Material Removal Rate (MRR) model of 4 inch 4H-SiC has been developed. Integration of novel diamond lapping and HECMP can reduce 29 % processing time as compared with conventional processes. Future study can focus on pilot production of 4H-SiC wafers.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 IX 表目錄 XIV 符號表 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 論文架構 4 第二章 文獻回顧 6 2.1 單晶4H-SiC基板材料介紹 6 2.2 單晶4H-SiC基板研光平坦化製程相關文獻 8 2.3 單晶4H-SiC基板化學機械平坦化製程相關文獻 10 2.4 氣體輔助化學機械拋光專利回顧 15 2.5 單晶碳化矽拋光液相關專利回顧 17 2.6 文獻回顧總結 18 第三章 單晶4H-SiC晶圓平坦化原理介紹 19 3.1 硬脆基板材料機械性質 19 3.2 材料移除模型建立 22 3.2.1化學機械拋光材料移除模型建立 22 3.2.2複合式化學機械拋光材料移除模型建立 26 3.3 單晶4H-SiC基板材料移除機制 29 3.3.1樹酯銅鐵研光材料移除機制 29 3.3.2複合式化學機械拋光材料移除機制 30 3.4 單晶4H-SiC晶圓平坦化原理介紹總結 32 第四章 實驗設備與規劃 33 4.1 單晶4H-SiC研光與拋光設備與規劃 33 4.1.1 兩吋單晶4H-SiC基板單面研光(實驗A) 35 4.1.2 兩吋單晶4H-SiC基板化學機械拋光(實驗B) 37 4.1.3 四吋單晶4H-SiC基板平坦化分析(實驗C) 39 4.2 研光和拋光實驗機台 41 4.2.1 M15-研磨拋光機 41 4.2.2 M15-PVS密閉式拋光機 42 4.3 實驗耗材 43 4.3.1 研光盤 43 4.3.2 拋光墊 44 4.3.3 研光液 45 4.3.4 拋光液 48 4.3.5 單晶4H-SiC晶圓 51 4.4 量測設備 52 第五章 實驗結果與討論 53 5.1 兩吋單晶4H-SiC基板矽面單面研光(實驗A) 54 5.1.1 樹酯銅鐵研光盤機械性質分析 54 5.1.2 兩吋單晶4H-SiC基板矽面單面研光參數測試實驗 56 5.1.3 兩吋單晶4H-SiC基板矽面研光材料移除率分析 57 5.1.4 吋單晶4H-SiC基板矽面單面研光摩擦力分析 59 5.1.5 兩吋單晶4H-SiC基板矽面單面研光Bow/Warp/TTV量測分析 60 5.1.6 兩吋單晶4H-SiC基板矽面單面研光表面粗糙度分析 64 5.1.7 單晶4H-SiC基板矽面次表層裂縫觀察與分析 65 5.1.8 單晶4H-SiC試片矽面之接觸角量測分析 67 5.1.9 單晶4H-SiC試片矽面之硬度量測結果 68 5.1.10 單晶4H-SiC之試片矽面X-ray光電子能譜量測結果 70 5.1.11 單晶4H-SiC基板矽面單面研光實驗總結 72 5.2 兩吋單晶4H-SiC基板矽面化學機械平坦化(實驗B) 74 5.2.1 兩吋單晶4H-SiC基板矽面化學機械拋光參數測試實驗 74 5.2.2 製程參數對於兩吋單晶4H-SiC矽面材料移除率影響 76 5.2.3 製程參數對於兩吋單晶4H-SiC矽面表面粗糙度影響 81 5.2.4 單晶4H-SiC基板矽面化學機械拋光模型建立 84 5.2.5 拋光液含氧量分析 90 5.2.6 單晶4H-SiC基板矽面複合式化學機械拋光模型建立 92 5.2.7 兩吋單晶4H-SiC基板矽面CMP與HECMP效率分析 99 5.3 四吋單晶4H-SiC基板矽面平坦化製程整合分析(實驗C) 102 5.3.1 四吋單晶4H-SiC基板矽面製程整合材料移除率分析 104 5.3.2 四吋單晶4H-SiC基板矽面Bow/Warp/TTV量測分析 106 5.3.3 四吋單晶4H-SiC基板矽面 表面粗糙度量測結果分析 110 5.3.4 四吋單晶4H-SiC基板矽面 X-ray掠角量測分析 115 5.3.5 四吋單晶4H-SiC基板矽面製程整合綜合分析 119 5.4 綜合結果與討論 124 第六章 結論與建議 125 6.1 結論 125 6.2 建議 126 參考文獻 127 附錄A碳化矽晶圓奈米壓印 130 附錄B樹酯銅鐵研光盤製作 131 附錄C 鑽石研光之表面粗糙度 132 附錄D接觸角量測結果 134 附錄E四吋單晶碳化矽表面粗糙度 135 作者簡介 141

    [1] 楊雅嵐,“碳化矽元件發展”,工研院IEK產業分析,2010。
    [2] P. G. a. D. T. Jose Millan, "Recent developments in SiC power devices and related technology", International Conference on Microelectronics (MIEL 2004), Serbia and Montenegro, vol. 1, pp. 16-19, 2004.
    [3] S.-K. Lee, "Processing and Characterization of Silicon Carbide (6H- and 4H-SiC) Contacts for High Power and High TemperatureDevice Applications,", Department of Electronics, KTH, Royal Instituteof Technology, 2002.
    [4] H.-J. Guo, W. Huang, X. Liu, P. Gao, S.-Y. Zhuo, J. Xin, et al., "A competitive lattice model Monte Carlo method for simulation competitive growth of different polytypes in close-packed crystals: 4H and 6H silicon carbide", Computational Materials Science, vol. 100, pp. 159-165, 2015.
    [5] H. Yashiro, T. Fujimoto, N. Ohtani, T. Hoshino, M. Katsuno, T. Aigo, et al., "Development of Lapping and Polishing Technologies of 4H-SiC Wafers for Power Device Applications", Materials Science Forum, vol. 600-603, pp. 819-822, 2009.
    [6] A. Kubota, M. Yoshimura, S. Fukuyama, C. Iwamoto, and M. Touge, "Planarization of C-face 4H-SiC substrate using Fe particles and hydrogen peroxide solution", Precision Engineering, vol. 36, pp. 137-140, 2012.
    [7] Y. Zhou, G. Pan, X. Shi, L. Xu, C. Zou, H. Gong, et al., "XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP)", Applied Surface Science, vol. 316, pp. 643-648, 2014.
    [8] 楊竣凱,“複合式能量化學機械拋光於單晶碳化矽基板平坦化製程之研究”,國立台灣科技大學,機械工程研究所,碩士學位論文, 2014。
    [9] Y. Zhou, G. Pan, X. Shi, S. Zhang, H. Gong, and G. Luo, "Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers", Tribology International, vol. 87, pp. 145-150, 2015.
    [10] H. Deng, K. Hosoya, Y. Imanishi, K. Endo, and K. Yamamura, "Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry", Electrochemistry Communications, vol. 52, pp. 5-8, 2015.
    [11] 土肥俊郎,“拋光工件的拋光裝置及方法”,中華人民共和國專利CN1644317,2005。
    [12] 陳炤彰、周炳伸、杜維剛,“氣體添加研磨液的供應系統及其方法”,日本專利特許5721245號,2015。
    [13] 新田浩士,“碳化矽研磨組合物”,中華民國專利TW201124514,2011。
    [14] 森永鈞,“研磨用組成物”,中華民國專利TW201333176,2013。
    [15] 周炳伸,“水解能量於可水解鋁酸鋰基板平坦化製程之研究”,國立台灣科技大學,機械工程研究所,碩士學位論文,2012。
    [16] F. Zhao, W. Du, and C.-F. Huang, "Fabrication and characterization of single-crystal 4H-SiC microactuators for MHz frequency operation and determination of Young’s modulus", Microelectronic Engineering, vol. 129, pp. 53-57, 2014.
    [17] T. Vodenitcharova, L. C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho, et al., "The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks", Journal of Materials Processing Technology, vol. 194, pp. 52-62, 2007.
    [18] W. D. N. Matthew A. Hopcroft, and Thomas W. Kenny, "What is the Young's Modulus of Silicon?", Journal of Microelectromechanical Systems, vol. 19, pp. 229-238, 2010.
    [19] X. Luo, S. Goel, and R. L. Reuben, "A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide", Journal of the European Ceramic Society, vol. 32, pp. 3423-3434, 2012.
    [20] D. T. a. V. Marinković, "Modelling and Optimization of the Surface Roughness in the Dry Turning of the Cold Rolled Alloyed Steel Using Regression Analysis", A Journal of ABCM, the Brazilian Society of Mechanical Sciences and Engineering, vol. 4, pp. 41-48, 2012.
    [21] W. Henry, "Experiments on the Quantity of Gases Absorbed by Water, at Different Temperatures, and under Different Pressures," Philosophical Transactions of the Royal Society of London, vol. 93, pp. 29-42 and 274-276, 2015.
    [22] H. Nitta, A. Isobe, t. J. Hong, and T. Hirao, "Research on Reaction Method of High Removal Rate Chemical Mechanical Polishing Slurry for 4H-SiC Substrate", Japanese Journal of Applied Physics, vol. 50, p. 046501, 2011.
    [23] M. R. Marks, "Characterization Methods for Ultrathin Wafer and Die Quality," IEEE Transactions on Components vol. 4, 2014.

    QR CODE