簡易檢索 / 詳目顯示

研究生: 粘煜邦
Yu-Pang Nien
論文名稱: 電化學銑削AISI 304不鏽鋼之參數效應、陽極溶解機制與加工表面分析研究
Parametric Influences, Anodic Dissolution and Machined Surface Integrity Following Electrochemical Milling of AISI 304 Stainless Steels
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 王朝正
Chaur-Jeng Wang
蔡秉均
Ping-Chun Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 103
中文關鍵詞: 電化學銑削陽極溶解機制材料移除率模型有效工作時間表面粗糙度鈍化層與拋光表面皮膜變異數分析殘差分析
外文關鍵詞: Electrochemical milling, Anodic dissolution, Material removal rate model, Effective working duration, Surface roughness, Passivate layer and polish layer, Analysis of variance, Residual analysis
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探究電化學銑削之陽極溶解機制,透過分析模型預測參數之影響力。並以基礎測試、擴充基礎測試與主流測試,透過操作參數以觀測汲取電流、材料移除率、電流轉換效率與加工表面完整性之效應。實驗結果發現,陽極溶解之演化分為電流攀升、最大電流、有效加工電流與無效加工電流階段。並證明過低之加工時間(<19.4 sec)僅以低陽極溶解率移除表面之氧化膜,而過高之加工時間(>16 min)則造成陽極溶解的無效工作時間,有效加工時間則介於19.4 sec與16 min之間。並由能量散色光譜驗證,溶解穩定期形成氧化膜因而造成陽極溶解能力與表面粗糙度下降。變異數分析證明,電化學能參數於轉換成材料移除製程有極限之顯著性與貢獻力(PCR)。殘差分析證明,在電流效率與表面粗糙度之高殘差與參數之交互作用無關。與實驗結果相比,經修正之分析模型精度達可達到93.70%。因子效應對觀測指標之顯著性與影響力皆已詳加分析與討論。


    This study investigates the anodic dissolution mechanism of electrochemical milling and modify the analytical model to predict the influence of parameters. Based on baseline test, extended baseline test and mainstream test, the effects of drawn current, material removal rate, current efficiency and machined surface integrity were observed through operating parameters. The experimental results show that the evolution of anodic dissolution is divided into the stages of current rising, peak current, effective current and ineffective current. And It is proved that short machining time (<19.4 sec) only can remove the oxide film on the surface with low anodic dissolution rate, while long machining time (>16 min) can result in ineffective working duration for anodic dissolution. It was verified by energy dispersive spectroscopy that the oxide film was formed in the stable period of dissolution, which resulted in the decrease of anode dissolution ability and surface roughness. Analysis of variance demonstrated that the conversion of electrochemical energy parameters to material removal processes have limits of significant contributions (PCR). Residual analysis demonstrated that high residuals in current efficiency and surface roughness were independent of parameter interactions. Compared with the experimental results, the accuracy of the modified analytical model can reach an accuracy of 93.70%. The significance and significant contribution on observation indicators have been analyzed by main effect and discussed in detail.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 符號定義 XI 第一章 研究介紹 1 第二章 文獻回顧 3 2.1 電化學加工之介紹 3 2.2 電化學加工之反應電位 6 2.3 法拉第定律與統御方程式 8 2.4 電解液之離子運動 10 2.5 電解液之導電度與導電率 11 2.6 電化學之電雙層 13 2.7 電勢能之損耗模型與分配模型 15 2.8 極化曲線與蝕刻、拋光與鈍化之關聯 16 2.9 電化學加工之電流效率 18 2.10 極限電流密度 18 2.11 高溶解率電化學拋光 19 2.12 鈍化反應 20 2.13 加工尺寸精密度 22 第三章 研究方法 24 3.1 研究程序 24 3.2 電化學反應溶解價之謬誤與修正 27 3.3 析氧反應與陽極產物之辨識 29 3.4 固定電極之陽極溶解機制 31 3.5 陽極溶解之移除率模型 32 3.6 極化曲線分析 37 第四章 實驗工作 38 4.1 實驗材料與加工電極 38 4.2 電解液與導電率量測 39 4.3 電化學銑削實驗設置與設備 40 4.4 實驗設計 41 4.4.1 基礎測試 41 4.4.2 擴充基礎測試 44 4.4.3 主流測試 45 4.4.4 驗證測試 46 4.5 數據量測與分析方法 47 4.5.1 極化曲線量測 47 4.5.2 電壓與電流波型量測 47 4.5.3 材料移除率量測 48 4.5.4 三維表面形貌與表面粗糙度觀測 49 4.5.5 顯微組織觀測 50 第五章 實驗結果與討論 51 5.1 基礎測試之參數效應 51 5.1.1 極化曲線與加工表面顯微組織 51 5.1.2 脈衝電壓與電流波型分析 54 5.1.3 電化學銑削之有效加工時間評估測試 55 5.1.4 電壓與加工時間對平均汲取電流之效應 58 5.1.5 電壓與加工時間對材料移除率之效應 60 5.1.6 電壓與加工時間對電流效率之效應 62 5.1.7 電壓與加工時間對溶解深度之效應 64 5.1.8 電壓與加工時間對表面粗糙度之效應 66 5.1.9 加工表面之皮膜顯微組織 68 5.2 擴充基礎測試之參數效應 70 5.2.1 極間間隙之效應 70 5.2.2 極間間隙與加工時間對平均汲取電流之效應 71 5.2.3 極間間隙與加工時間對材料移除率之效應 73 5.2.4 極間間隙與加工時間對電流效率之效應 74 5.2.5 極間間隙與加工時間對表面粗糙度之效應 75 5.3 主流測試之參數效應 78 5.3.1 導電率、電壓與極間間隙對平均汲取電流與材料移除率之效應 78 5.3.1 導電率、電壓與極間間隙對電流效率之效應 81 5.3.2 導電率、電壓與極間間隙對表面粗糙度之效應 84 5.3.3 加工表面之三維形貌與顯微組織 88 5.4 驗證測試之模型校驗 90 第六章 結論與未來展望 92 6.1 研究結果總結 92 6.1.1 基礎測試之參數效應 92 6.1.2 擴充基礎測試之參數效應 93 6.1.3 主流測試之參數效應 94 6.1.4 驗證測試之模型校驗 96 6.2 未來展望 96 參考文獻 97 附錄一 研究著作與學術榮譽 103

    [1] H.A. El-Hofy, Advanced machining processes: nontraditional and hybrid machining processes, McGraw Hill Professional, 2005.
    [2] J.A. McGeough, Advanced methods of machining, Springer Science & Business Media, 1988.
    [3] B. Griffiths, Manufacturing surface technology: Surface integrity & functional performance, Taylor & Francis, 2001.
    [4] J.P. Davim, Surface integrity in machining, Springer, 2010.
    [5] J.A. McGeough, Principles of electrochemical machining, Chapman and Hall, 1974.
    [6] K.P. Rajurkar, D. Zhu, J.A. McGeough, J. Kozak, A. De Silva, New developments in electro-chemical machining, CIRP Annals, 48 (1999) 567-579.
    [7] A. DeBarr, D.J.L. Oliver, London, Electrochemical machining, Macdonald & Co, (1968).
    [8] M. Datta, L.T. Romankiw, Application of chemical and electrochemical micromachining in the electronics industry, 136 (1989) 285C.
    [9] K.K. Saxena, J. Qian, D. Reynaerts, A review on process capabilities of electrochemical micromachining and its hybrid variants, International Journal of Machine Tools and Manufacture, 127 (2018) 28-56.
    [10] S. Hinduja, M. Kunieda, Modelling of ECM and EDM processes, CIRP Annals, 62 (2013) 775-797.
    [11] J. Bannard, Electrochemical machining, 7 (1977) 1-29.
    [12] F. Klocke, A. Klink, D. Veselovac, D.K. Aspinwall, S.L. Soo, M. Schmidt, J. Schilp, G. Levy, J.-P. Kruth, Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes, CIRP Annals, 63 (2014) 703-726.
    [13] J.C.d.S. Neto, E.M.d. Silva, M.B.d. Silva, Intervening variables in electrochemical machining, Journal of Materials Processing Technology, 179 (2006) 92-96.
    [14] F. Zawistowski, New system of electrochemical form machining using universal rotating tools, International Journal of Machine Tools and Manufacture, 30 (1990) 475-483.
    [15] J.S. Zhao, J.W. Xu, Y.W. Zhu, Design optimization of cathode's feeding path of NC-electrochemical machining based on computer simulation of shaping process, in: Proceedings of the 15th International Symposium on Electromachining, ISEM 2007, 2007, pp. 365-368.
    [16] M.M. Lohrengel, K.P. Rataj, T. Münninghoff, Electrochemical Machining—mechanisms of anodic dissolution, Electrochimica Acta, 201 (2016) 348-353.
    [17] J. Wang, Z. Xu, J. Wang, D. Zhu, Anodic dissolution characteristics of Inconel 718 in C6H5K3O7 and NaNO3 solutions by pulse electrochemical machining, Corrosion Science, 183 (2021).
    [18] R.J. Leese, A. Ivanov, Electrochemical micromachining: An introduction, Advances in Mechanical Engineering, 8 (2016) 1687814015626860.
    [19] B. Bhattacharyya, B. Doloi, Modern machining technology: Advanced, hybrid, micro machining and super finishing technology, Academic Press, 2019.
    [20] B. Bhattacharyya, Electrochemical micromachining for nanofabrication, MEMS and nanotechnology, Elsevier Science, 2015.
    [21] M. Schneider, L. Simunkova, M. Manko, M.M. Lohrengel, W. Hoogsteen, Anodic dissolution of chromium at high current densities in sodium nitrate electrolyte, Journal of Solid State Electrochemistry, 23 (2018) 345-350.
    [22] G. Song, A. Atrens, D. Stjohn, J. Nairn, Y. Li, The electrochemical corrosion of pure magnesium in 1 N NaCl, Corrosion Science, 39 (1997) 855-875.
    [23] Z.Y. Liu, X.G. Li, Y.F. Cheng, Effect of strain rate on cathodic reaction during stress corrosion cracking of X70 pipeline steel in a near-neutral pH solution, Journal of Materials Engineering and Performance, 20 (2010) 1242-1246.
    [24] P.R. Roberge, Corrosion basics: An Introduction, NACE International, 2006.
    [25] C. Comninellis, A. Nerini, Anodic oxidation of phenol in the presence of NaCl for wastewater treatment, Journal of Applied Electrochemistry, 25 (1995) 23-28.
    [26] C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley, 2007.
    [27] T. Haisch, E.J. Mittemeijer, J.W.J.J.o.A.E. Schultze, High rate anodic dissolution of 100Cr6 steel in aqueous NaNO3 solution, 34 (2004) 997-1005.
    [28] L. Tang, B. Li, S. Yang, Q. Duan, B. Kang, The effect of electrolyte current density on the electrochemical machining S-03 material, The International Journal of Advanced Manufacturing Technology, 71 (2014) 1825-1833.
    [29] T.A. Wagner, High rate electrochemical dissolution of iron-based alloys in NaCl and NaNO3 electrolytes, in, 2002.
    [30] S. Khalil, V. Kniazheva, I. Kolotyrkin, M.J.Z.M. Vedeneeva, Electrochemical study of the effect of carbon, titanium and manganese content on the corrosion resistance of chromium-nickel-manganese steels. I- Anode behavior (Corrosion resistance and anodic behavior of Kh 18 N 9 steels with various nickel-manganese-carbon-titanium contents), 1 (1965) 465-472.
    [31] L.M. Kotlyar, N.M. Minazetdinov, T. Physics, Anode-shape determination with allowance for electrolyte properties in problems of dimensional electrochemical machining of metals, 44 (2003) 450-454.
    [32] B.H. Kim, C.W. Na, Y.S. Lee, D.K. Choi, C.N. Chu, Micro electrochemical machining of 3D micro structure using dilute sulfuric acid, CIRP Annals, 54 (2005) 191-194.
    [33] F. Klocke, S. Harst, F. Karges, M. Zeis, A. Klink, Modeling of the electrochemical dissolution process for a two-phase material in a passivating electrolyte system, Procedia CIRP, 58 (2017) 169-174.
    [34] E.E. Stansbury, R.A. Buchanan, Fundamentals of electrochemical corrosion, ASM international, 2000.
    [35] G. Mayank, C. Fuchen, K. Masanori, Analysis of reactions determining current efficiency in electrochemical machining, Procedia CIRP, 68 (2018) 511-516.
    [36] M.M. Lohrengel, I. Klüppel, C. Rosenkranz, H. Bettermann, J.W. Schultze, Microscopic investigations of electrochemical machining of Fe in NaNO3, Electrochimica Acta, 48 (2003) 3203-3211.
    [37] A.W. Batchelor, L.N. Lam, M. Chandrasekaran, Materials degradation and its control by surface engineering, World Scientific, 2011.
    [38] A. Taha, H. Abdel Rahman, F.J.I.J.o.E.S. Abouzeid, A study of factors influencing on dissolution behavior of copper in orthophosphoric acid using rotating cylinder electrode (RCE) and rotating disc electrode (RDE), 8 (2013) 9041-9059.
    [39] M. Datta, Development, Anodic dissolution of metals at high rates, 37 (1993) 207-226.
    [40] H.C. Kuo, D. Landolt, Rotating disc electrode study of anodic dissolution or iron in concentrated chloride media, Electrochimica Acta, 20 (1975) 393-399.
    [41] Y. Ge, Z. Zhu, Y. Zhu, Electrochemical deep grinding of cast nickel-base superalloys, Journal of Manufacturing Processes, 47 (2019) 291-296.
    [42] Y. Wang, Z. Xu, D. Meng, Z. Wang, Obtaining high surface quality in electrochemical machining of TC17 titanium alloy and Inconel 718 with high current densities in NaNO3 solution, Journal of The Electrochemical Society, 168 (2021).
    [43] Y. Ge, Z. Zhu, D. Wang, Z. Ma, D. Zhu, Study on material removal mechanism of electrochemical deep grinding, Journal of Materials Processing Technology, 271 (2019) 510-519.
    [44] R. Schuster, V. Kirchner, P. Allongue, G.J.S. Ertl, Electrochemical micromachining, 289 (2000) 98-101.
    [45] S.H. Ahn, S.H. Ryu, D.K. Choi, C.N. Chu, Electro-chemical micro drilling using ultra short pulses, Precision Engineering, 28 (2004) 129-134.
    [46] T. Kawanaka, M. Kunieda, Mirror-like finishing by electrolyte jet machining, CIRP Annals, 64 (2015) 237-240.
    [47] A.J. Sedriks, Corrosion of Stainless Steels, in: Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 2001, pp. 1707-1708.
    [48] S. Detriche, S. Vivegnis, J.F. Vanhumbeeck, A. Felten, P. Louette, F.U. Renner, J. Delhalle, Z. Mekhalif, XPS fast depth profile of the native oxide layers on AISI 304, 316 and 430 commercial stainless steels and their evolution with time, Journal of Electron Spectroscopy and Related Phenomena, 243 (2020).
    [49] E. Rosset, M. Datta, D. Landolt, Electrochemical dissolution of stainless steels in flow channel cells with and without photoresist masks, 20 (1990) 69-76.
    [50] M. Datta, Fabrication of an array of precision nozzles by through‐mask electrochemical micromachining, 142 (1995) 3801.
    [51] M. Datta, D. Landolt, On the role of mass transport in high rate dissolution of iron and nickel in ECM electrolytes—II. Chlorate and nitrate solutions, 25 (1980) 1263-1271.
    [52] K.W. Mao, ECM study in a closed‐cell system: II., and, 118 (1971) 1876.
    [53] C. Rosenkranz, M.M. Lohrengel, J.W. Schultze, The surface structure during pulsed ECM of iron in NaNO3, Electrochimica Acta, 50 (2005) 2009-2016.
    [54] M.M. Lohrengel, Pulsed electrochemical machining of iron in NaNO3: Fundamentals and new aspects, Materials and Manufacturing Processes, 20 (2005) 1-8.
    [55] M.M. Lohrengel, C. Rosenkranz, Microelectrochemical surface and product investigations during electrochemical machining (ECM) in NaNO3, Corrosion Science, 47 (2005) 785-794.
    [56] M. Datta, D. Landolt, Surface brightening during high rate nickel dissolution in nitrate electrolytes, 122 (1975) 1466.
    [57] M. Datta, D. Landolt, Film breakdown on nickel under transpassive dissolution conditions in sodium nitrate solutions, 124 (1977) 483.
    [58] S.V. Damme, G. Nelissen, B.V.d. Bossche, J. Deconinck, Numerical model for predicting the efficiency behaviour during pulsed electrochemical machining of steel in NaNO3, Journal of Applied Electrochemistry, 36 (2005) 1-10.
    [59] A. Gomez-Gallegos, F. Mill, A.R. Mount, S. Duffield, A. Sherlock, 3D multiphysics model for the simulation of electrochemical machining of stainless steel (SS316), The International Journal of Advanced Manufacturing Technology, 95 (2017) 2959-2972.
    [60] D. Deconinck, S. Van Damme, C. Albu, L. Hotoiu, J. Deconinck, Study of the effects of heat removal on the copying accuracy of the electrochemical machining process, Electrochimica Acta, 56 (2011) 5642-5649.
    [61] F.C. Nascimento, C.E. Foerster, S.L.R.d. Silva, C.M. Lepienski, C.J.d.M. Siqueira, C. Alves Junior, A comparative study of mechanical and tribological properties of AISI-304 and AISI-316 submitted to glow discharge nitriding, Materials Research, 12 (2009) 173-180.
    [62] V.M. Shyvaniuk, Y. Mine, S.M. Teus, Phase transformation and grain refinement in hydrogenated metastable austenitic steel, Scripta Materialia, 67 (2012) 979-982.
    [63] P. Lowdin, Advances in quantum chemistry, Academic Press, 1979.
    [64] M. Morinaga, Local lattice strains around alloying elements in metals, in: A Quantum Approach to Alloy Design, 2019, pp. 221-260.
    [65] C. Kuo, H. Kao, H. Wang, Novel design and characterisation of surface modification in wire electrical discharge machining using assisting electrodes, Journal of Materials Processing Technology, 244 (2017) 136-149.
    [66] G. Li, H. Wen, C. Yao, J. Wang, X. Lu, Z. Xu, K. Zou, J. Kikuchi, C. Chen, A simplified IGBT behavioral model with a tail current module for switching losses estimation, in: 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), IEEE, 2017, pp. 1-6.

    無法下載圖示 全文公開日期 2027/07/19 (校內網路)
    全文公開日期 2027/07/19 (校外網路)
    全文公開日期 2027/07/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE