簡易檢索 / 詳目顯示

研究生: 劉瑞民
Jui-min Liu
論文名稱: 太陽光電熱能複合系統之最佳化參數設計與實務驗證
Design and Experimental Validation of Optimizing Solar Photovoltaic and Thermal Composite System Paramaters
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
蘇德利
Te-Li Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 144
中文關鍵詞: 太陽光電熱能複合系統田口方法主效果分析變異數分析灰關聯分析層級分析熵測度性能效率曲線相關係數方均根百分比偏差
外文關鍵詞: Solar Photovoltaic and Thermal Composite System, Taguchi Method, Principle Effect Analysis, Analysis of Variance, Grey Relational Analysis, Analytic Hierarchy Process, Entropy, Performance Efficiency Curve, Correlation Coefficient, Root Mean Square Percent Deviation
相關次數: 點閱:296下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為太陽光電熱能複合系統(PV/T)之最佳化參數設計,主要探討PV/T設計參數與品質特性之關係,PV/T的兩個品質特性分別為發電效率與儲熱效率,而設計及製造PV/T時,影響PV/T的重要參數為集熱板材質、收集器傾斜角、收集器方位角、集熱管數目、質量流率、儲水槽容積/收集器面積(V/A)比等六種,本研究首先利用性能模擬測試軟體預測最佳化PV/T系統參數,透過田口方法(Taguchi Method)規劃實驗,並搭配主效果分析與變異數分析(Analysis of Variance, ANOVA)理論,對發電效率與儲熱效率兩個品質特性實驗結果分別進行單一品質特性分析,然後將各品質數據進行灰關聯生成之數據前處理,再配合熵測度(Entropy)進行灰關聯分析(Grey Relational Theory),另一方面,再利用層級分析法(Analytic Hierarchy Process, AHP)的層級架構得到正對比矩陣,經由一致性的檢查與計算各參數水準的總權重,並排序其重要性得到最佳化參數因子及水準。經過上述灰關聯分析與層級分析作相互地驗證後,找出多重品質最佳化之因子與水準組合,再經確認實驗,發電效率與儲熱效率的訊號雜訊比皆落於95%信賴區間,顯示本實驗具有再現性且值得信賴,最佳參數化組合為:集熱板材質為銅、收集器方位角為正南方、集熱管數目為12支、質量流率為0.01kg/s-m2、收集器傾斜角為25°、V/A比為123。
    研究結果顯示性能模擬測試實驗數據總效率最大值可達64.97%、最小值為44.38%,實體性能測試總效率最大值可達64.45%、最小值為41.36%,經由性能效率曲線評估,性能模擬測試與實體性能測試之儲熱效率係數與發電效率係數誤差率分別為2.78%和2.16%,顯示性能模擬測試具有良好的預測效果。
    另外,性能模擬測試與實體性能測試總效率之相關係數(Correlation Coefficient)和方均根百分比偏差(Root Mean Square Percent Deviation)分別為0.99和3.47%,相關係數非常接近1,顯示本研究的實體性能測試具有良好的應證效果。


    This study aimed to optimize the parameter design for solar photovoltaic and thermal composite system (PV/T), and discuss the relationship between the PV/T design parameters and quality characteristics. The two PV/T quality characteristics were power generation efficiency and heat storage efficiency. In the design and manufacturing of PV/T, major influencing factors included solar panel material, collector azimuth angle, collector inclination angle, tube number, the mass flow rate, storage tank volume/collector area (V/A) ratio. Therefore, this study first used the performance simulation test software to predict the optimized PV/T system parameters. The Taguchi method was applied in experiment planning, coupled with the principle effect analysis and the analysis of variance theory, to conduct the single quality characteristic analysis of the experimental results of two quality characteristics including power generation efficiency and heat storage efficiency. Next, this study preprocessed the grey relational data generated from various quality data before the grey relational analysis by using entropy. The Analytic Hierarchy Process (AHP) was employed to obtain the positive comparative matrix. After the consistency checks and the calculation of the total weights of the various parameter levels, the ranking of the parameters was determined to obtain the optimized parameter factors and their levels. After the mutual confirmation by using the grey relational theory and AHP as described above, this study determined the multiple quality optimization factor and level combinations. According to the confirmation experiment, the S/N ratios of power generation efficiency and heat storage efficiency fell within the 95% confidence interval, suggesting that the experiment can be reproducible and trustworthy. The optimal parameter combination is: copper solar panel, collector inclination angle at 25°, 12 tubes, the mass flow rate at 0.01kg/s-m2, collector azimuth angle at the south, V/A ratio at 123.
    The results suggested that the maximum value of the overall efficiency of the performance simulation test experimental data can reach 64.97%, and the minimum value is 44.38%. The maximum value of the physical performance test overall efficiency is 64.45%, and the minimum value is 41.36%. The performance efficiency curve assessment found that the error rates for heat storage efficiency coefficient and the power generation efficiency coefficient in the performance simulation test and the physical performance test are 2.78% and 2.16%, suggesting that the performance simulation test has good prediction effects.
    The deviations of the correlation coefficient and root mean square percentage of the total efficiency of performance simulation test and the physical performance test are 0.99 and 3.47% respectively. The correlation coefficient is very close to 1, suggesting that the physical performance test has good confirmation effects.

    摘要 I Abstract III 致謝 VI 目錄 VIII 圖索引 XII 表索引 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 4 1.3.1 太陽光電熱能複合系統 4 1.3.2 參數最佳化理論 6 1.4 研究流程 8 1.5 論文架構 9 第二章 太陽光電熱能複合系統介紹 11 2.1 太陽光電熱能複合系統簡介 11 2.2 PV/T收集器 13 2.3 管板式PV/T簡介 17 2.4 PV/T發電效率及儲熱效率 18 2.4.1 發電效率特性分析 18 2.4.2 儲熱效率特性分析 19 2.5 PV/T性能測試軟體與設備 21 2.5.1 PV/T性能模擬測試軟體 21 2.5.2 PV/T實體性能測試設備 24 第三章 參數最佳化分析理論 26 3.1 田口品質工程 26 3.1.1 工程研發的步驟 28 3.1.2 穩健參數設計法 31 3.1.3 直交表 34 3.1.4 品質損失函數 36 3.1.5 訊號雜訊比 38 3.1.6 主效果分析 40 3.1.7 變異數分析 41 3.1.8 確認實驗 44 3.2 灰關聯分析 46 3.2.1 灰關聯分析概言 46 3.2.2 灰關聯分析步驟 48 3.2.3 灰關聯序列之可比性 49 3.2.4 灰關聯生成 50 3.2.5 灰關聯係數 51 3.2.6 灰關聯度 52 3.3 層級分析法 54 3.3.1 內涵特性 55 3.3.2 目的與假設 55 3.3.3 層級與要素 56 3.3.3.1 構建與評量層級 57 3.3.3.2 層級結構的要點 57 3.3.4 評估尺度 58 3.3.5 AHP流程 59 3.3.6 AHP運算方法 60 3.4 相關係數 63 3.5 方均根百分比偏差 64 第四章 實驗規劃與流程 65 4.1 實驗規劃 65 4.1.1 選擇因子討論 67 4.1.2 直交表規劃 70 4.2 PV/T實驗設備 71 第五章 實驗結果與討論 74 5.1 PV/T單一品質實驗數據分析 74 5.1.1 PV/T發電效率分析 74 5.1.2 PV/T儲熱效率分析 81 5.2 PV/T多重品質實驗數據分析 86 5.2.1 多重品質特性之灰關聯分析 86 5.2.2 多重品質特性之層級分析 95 5.3 確認實驗 101 5.4 實驗數據結果及探討 107 第六章 結論 114 第七章 未來展望 117 參考文獻 118 作者簡介 124

    1.經濟部能源局,2010年能源產業技術白皮書,台北(2010)。
    2.趙佳飛,駱仲泱,蔡潔聰,王輝,倪明江,「太陽能電熱聯產技術研究綜述」,中國電機工程學報,第29卷第17期(2009)。
    3.E. C. Kern Jr., and M. C. Russell, “Combined photovoltaic and thermal hybrid collector systems”, In Proceedings of the 13th IEEE PV specialist conference, pp. 1153–1157(1978).
    4.S. D. Hendrie, “Evaluation of combined photovoltaic/thermal collectors”, In Proceedings of the ISES international congress, Vol. 3, pp. 1865–1869(1979).
    5.P. Raghuraman, “Analytical predictions of liquid and air photovoltaic/thermal flat-plate collector performance”, Journal of Solar Energy Engineering, Vol. 103, pp. 291-298(1981).
    6.C. H. Cox, and P. Raghuraman, “Design considerations for flat- platephotovoltaic/thermal collectors”, Solar Energy, Vol. 35, pp. 277-241(1985).
    7.J. J. Loferski, J. M. Ahmad, and A. Pandey, “Performance of photovoltaic cells incorporated into unique hybrid photovoltaic/thermal panels of a 2.8 KW residential solar energy conversion system”, Proceedings of 1988 Annual Meeting, pp. 427-431(1988).
    8.K. Sopian, H.T. Liu, K. S. Yigit, and T. N. Veziroglu, “Perfromance analysis of photovoltaic thermal air heaters”, Energy Conversion and Management, Vol. 3, pp. 1657-1670(1996).
    9.H. P. Garg, and R. S. Adhikari, “Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors︰steady-state simulation”, Renewable Energy, Vol. 11, pp. 363-385(1997).
    10.J. Prakash, “Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water”, Energy Conversion and Management, Vol. 35, pp. 967-972(1994).
    11.N. Aste, and G. Chiesa, “A solar multifunctional roof:photovoltaic and thermal coupling”, Passive and Low Energy Cooling for the Built Enevironment, pp. 897-900(2005).
    12.T. Bergene, and O. M. Lovvik, “Model calculations on a flat-plate solar heat collector with integrated solar cells”, Solar Energy, Vol. 55, pp.453-462(1995).
    13.R. Platz, D. Fischer,M. Zufferey, J. A. A. Selvan, A. Haller, and A. Shah, “Hybrid collectors using thin-film technology”, Proceedings of 26th IEEE Photovoltaic Specialists Conference, pp. 1293-1296(1997).
    14.P. Affolter, A. Haller, D. Ruoss, J. B. Gay, H. Althaus, and P. Toggweiler, “A new generation of hybrid solar collectors-absorption and high temperature behavior evaluation of amorphous modules”, Proceedings of 16th European Photovoltaic Solar Energy Conference(2000).
    15.B. Sandnes, and J. Rekstad, “A photovoltaic/thermal (PV/T) collector with a polymer absorber plate:experimental study and analytic model”, Solar Energy, Vol. 72, pp. 63-73(2002).
    16.Y. Tripanagnostopoulos, “Cost effective designs of building integrated PV/T solar systems”, Proceedings of 21st European PV Solar Energy Conference(2006).
    17.H. A. Zondag, D. W. de Vries, W. G. J. van Helden, R. J. C. van Zolingen, and A. A. van Steenhoven, “The yield of different combined PV-thermal collector designs”, Solar Energy, Vol. 74, pp. 253-269(2003).
    18.K. Vats, and G. N. Tiwari, “Performance evaluation of a building integrated semitransparent photovoltaic thermal system for roof and facade”, Energy and Buildings, Vol.45, pp. 211-218(2012).
    19.D. M. Byrne, and S. Taguchi, “The taguchi approach to parameter design”, Quality Process, Vol. 20, pp. 19-26(1987).
    20.S. W. Anderson, and K. Sedatole, “Designing quality into products: The use of accounting data in new product development”, Accounting Horizons, Vol. 12, pp. 213-233(1998).
    21.S. Datta, and S. S. Mahapatra, “Use of desirability function and principal component analysis in grey-Taguchi approach to solve correlated multi-responde optimization in submerged arc welding”, Journal of Advanced Manufacturing Systems, Vol. 9, pp.117-128( 2010).
    22.鄧聚龍,灰色系統基本方法,華中理工大學出版社,武昌(1987)。
    23.J. L. Deng, “Grey informational space”, The Journal of Grey System, Vol. 1, pp. 103-117(1989).
    24.J. L. Deng, “Control problems of grey system”, Systems and Control Letters, Vol. 1, pp.288-294(1982).
    25.S. Thomas, “Decision making for leaders the analytic hierarchy process for decisions in a complex world”, PA:RWS Publications(1990).
    26.S. Thomas, “Fundamentals of decision making with the analytic hierarchy process”, PA:RWS Publications(1994).
    27.C. F. J. Kuo, H. M. Tu, S. W. Liang, and W. L. Tsai, “Optimization of microcrystalline silicon thin film solar cell isolation processing parameters using ultraviolet laser”, Optics & Laser Technology, Vol. 42, pp. 945-955(2010).
    28.Y. M. Chiang, and H. H. Hsieh, “The use of the taguchi method with grey relational analysis to optimize the thin-film sputtering process with multiple quality characteristic in color filter manufacturing”, Computers and Industrial Engineering, Vol. 56, pp. 648-661(2009).
    29.C. F. J. Kuo, T. L. Su, P. R. Jhang, C. Y. Huang, and C. H. Chiu, “Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing”, Energy, Vol. 36, pp. 3554-3562(2011).
    30.B. J. Huang, T. H. Lin, W. C. Hung, and F. S. Sun, “Performance evaluation of solar photovoltaic/thermal systems”, Solar Energy, Vol. 70, pp. 443-448(2001).
    31.S. A. Kalogirou, “Solar thermal collectors and applications”, Progress in Energy and Combustion Science, Vol. 30, pp. 231-295(2004).
    32.X. Zhanga, X. Zhaoa, S. Smitha, J. Xub, and X. Yuc, “Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies”, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 599-617(2012).
    33.S. A. Kalogirou, and Y. Tripanagnostopoulos, “Hybrid PV/T solar systems for domestic hot water and electricity production”, Energy Conversion and Management, Vol. 47, pp. 3368-3382(2006).
    34.http://www.trnsys.com/
    35.傅和彥、黃士滔,品質管理-觀念、理論與方法,前程企業管理有限公司,新北市(2004)。
    36.S. H. Park, and J. Antony, “Robust design for quality engineering and six sigma”, World Scientific, Singapore (2008).
    37.P. J. Ross, “Taguchi techniques for quality engineering”, McGraw-Hill, New York(1996).
    38.李輝煌,田口方法-品質設計的原理與實務,高利圖書有限公司,台北(2011)。
    39.蘇朝墩,產品穩健設計,中華民國品質學會,台北(2002)。
    40.溫坤禮、黃宜豊、張偉哲、張廷政、游美麗、賴家瑞,灰關聯模型方法與應用,高立圖書,初版,台北(2003)。
    41.鄧聚龍,灰色系統理論與應用,高立圖書有限公司,台北(2003)。
    42.鄧振源、曾國雄,「層級分析法(AHP)的內涵特性與應用(上)、(下)」, 中國統計學報,第27卷第6、7期(1989)。
    43.褚志鵬,「層級分析法Analytic Hierarchy Process Theory, AHP」,東華大學企業管理系,花蓮(2003)。
    44.A. Tiwari, and M. S. Sodha, “Performance evaluation of solar PV/T system:An experimental validation”, Solar Enargy, Vol. 80, pp. 751-759(2006).
    45.Y. P. Chang, “Optimal design discrete-value tilt angle of PV using sequential neural-network approximation and orthogonal array”, Expert Systems with Applications, Vol. 36, pp. 6010-6018(2009).
    46.R. M. da Silva, and J. L. M. Fernandes, “Hybrid photovoltaic/thermal(PV/T) solar systems simulation with Simulink/Matlab”, Solar Energy, Vol. 84, pp. 1985-1996(2010).

    無法下載圖示 全文公開日期 2017/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE