簡易檢索 / 詳目顯示

研究生: 楊承哲
Cheng-Zhe Yang
論文名稱: 基於適應性無跡卡爾曼濾波器狀態估測之積分終端滑動模式控制於鋰離子電池/超級電容半主動混合儲能系統之應用
Adaptive UKF Estimator Based Integral Terminal Sliding Mode Control of Li-ion Battery/Ultracapacitor Semi-active Hybrid Energy Storage System
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 姜嘉瑞
Chia-Jui Chiang
陳亮光
Liang-Kuang Chen
羅一峰
Yi-Feng Luo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 190
中文關鍵詞: 半主動混合儲能系統無跡卡爾曼濾波器遞迴最小平方法規則導向策略積分終端滑動模式控制器
外文關鍵詞: Semi-active Hybrid Energy Storage System, Unscented kalman filter, Recursive Least Squares, Rule Based Strategy, Integral Terminal Sliding Mode Controller
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

混合儲能系統透過結合不同儲能元件,提升系統整體的能源使用效率及循環壽命,逐漸成為電能產業中的主要趨勢。本研究結合高比能量的鋰離子電池、高比功率的超級電容及單向升壓轉換器,建構鋰離子電池半主動混合儲能系統。根據所建立的鋰離子電池、超級電容及單向升壓轉換器數學模型,設計了一套基於無跡卡爾曼濾波器與積分終端滑動模式控制的能量管理策略。在策略中,透過一階數位低通濾波器對負載功率進行濾波,以得到較為平緩的輸出功率。
基於無跡卡爾曼濾波器和遞迴最小平方法,建立適應性估測策略,用於估測鋰離子電池與超級電容的狀態(荷電狀態、溫度、健康狀態和電壓值)及參數(等效串聯電阻、擴散電阻和擴散電容)。根據所估測的鋰離子電池荷電狀態和超級電容荷電狀態,建立了一套規則導向策略,調整鋰離子電池的目標輸出功率,使其能以較平滑功率輸出,避免瞬時大功率輸出,從而延長電池壽命,同時確保直流母線端電壓穩定。最終,使用積分終端滑動模式控制器控制鋰離子電池的輸出電流。
後續以不同工作狀態下的實驗及模擬驗證能量管理策略的有效性。實驗結果顯示,能量管理策略在不同工作情況下皆能達成精準控制及準確估測。在控制性能方面,系統可在0.5秒內收斂至追跡目標,且均方根誤差皆小於0.0185 A;在估測方面,鋰離子電池及超級電容的端電壓估測均方根誤差分別小於0.0286 V與0.029 V,溫度估測均方根誤差分別小於0.0408 °C和0.0937 °C,等效串聯電阻準確度分別達到80 %和74 %以上,擴散電阻準確度分別達到77 %和78 %以上,擴散電容準確度分別達到99 %和93 %以上。


Hybrid Energy Storage Systems (HESS), which combine different energy storage components, are becoming a major trend in the energy industry for their ability to enhance overall energy efficiency and cycle life. This study integrates high-energy-density lithium-ion batteries, high-power-density ultracapacitors, and a unidirectional boost converter to construct a semi-active HESS. An energy management strategy incorporating an Unscented Kalman Filter (UKF) and Integral Terminal Sliding Mode Control (ITSMC) is designed. A first-order low-pass filter (LPF) filters the load power to achieve a smoother output power.
An adaptive estimation strategy using UKF and Recursive Least Squares (RLS) estimates the state (state of charge, temperature, state of health, and voltage) and parameters (equivalent series resistance, diffusion resistance, and diffusion capacitance) of the lithium-ion battery and ultracapacitors. A rule-based strategy adjusts the target output power of the lithium-ion battery to ensure smoother power output, prevent instantaneous high-power output, and extend battery lifespan while maintaining stable DC bus voltage. ITSMC is used to control the output current of the lithium-ion battery.
Experiments and simulations under different operating conditions verify the strategy's effectiveness. Results show the system can converge to the tracking target within 0.5 seconds, with a root mean square error (RMSE) of less than 0.0185 A. The voltage estimation RMSE for the lithium-ion battery and ultracapacitors is less than 0.0286 V and 0.029 V, respectively. The temperature estimation RMSE is less than 0.0408 °C and 0.0937 °C. The accuracy for equivalent series resistance estimation is above 80 % and 74 %, for diffusion resistance it is above 77 % and 78 %, and for diffusion capacitance, it is above 99 % and 93 %.

摘要i 英文摘要ii 致謝iii 目錄vii 圖目錄xii 表目錄xiv 第一章 緒論1 1.1 研究背景1 1.2 文獻回顧3 1.2.1混合儲能系統拓樸回顧3 1.2.2估測方法策略回顧5 1.2.3能量管理策略回顧6 1.3 研究目的7 1.4 論文架構8 第二章 實驗設備與軟體9 2.1 元件介紹9 2.1.1鋰離子電池9 2.1.2超級電容14 2.1.3鋰離子電池與超級電容之比較18 2.2 硬體設備20 2.2.1ZAHNER ZENNIUM 電化學分析儀20 2.2.2可程式直流電源供應器22 2.2.3直流電子負載機24 2.2.4NI9211 C 系列溫度輸入模組26 2.2.5可程式恆溫恆濕試驗機28 2.2.6電容電阻電感測試儀30 2.2.7高性能電池檢測設備32 2.2.8微控制器開發板 34 2.3 軟體系統36 2.3.1MATLAB 與 Simulink36 2.3.2Arduino IDE 37 第三章 半主動混合儲能系統模型 38 3.1 鋰離子電池以及超級電容數學模型39 3.1.1鋰離子電池等效電路模型39 3.1.2超級電容等效電路模型43 3.1.3鋰離子電池以及超級電容之健康狀態47 3.2 鋰離子電池以及超級電容電池熱動態模型 48 3.3 單向升壓轉換器模型52 3.3.1單向升壓轉換器模型之基本拓樸52 3.3.2單向升壓轉換器之平均模型54 3.3.2.1 模型種類54 3.3.2.2 平均法54 3.4 鋰離子電池以及超級電容之等效電路模型參數鑑別58 3.5 鋰離子電池以及超級電容之放電測試62 第四章 能量管理策略 64 4.1 離散化方法66 4.2 一階數位低通濾波器67 4.3 適應性估測策略70 4.3.1無跡卡爾曼濾波器 72 4.3.1.1 鋰離子電池與超級電容之擴展離散模型73 4.3.1.2 無跡卡爾曼濾波器之估測流程 76 4.3.2遞迴最小平方法 80 4.3.2.1 最小平方法80 4.3.2.2 遞迴最小平方法82 4.3.2.3 鋰離子電池參數更新85 4.3.2.4 超級電容參數更新86 4.4 規則導向策略87 4.5 積分終端滑動模式控制器91 4.5.1滑動模式控制器介紹91 4.5.2滑動平面設計92 4.5.3控制器推導93 第五章 模擬及實驗結果97 5.1 單向升壓轉換器元件設計及模型驗證98 5.1.1單向升壓轉換器之元件設計98 5.1.2單向升壓轉換器之平均電流模型驗證 100 5.2 UDDS 駕駛行程 102 5.3 模擬結果 104 5.3.1超級電容組初始低電量模擬 106 5.3.2超級電容組初始中電量模擬 116 5.3.3超級電容組初始高電量模擬 126 5.3.4不同超級電容初始荷電狀態下之功率使用範圍及能量消耗 136 5.4 實驗結果 138 5.4.1超級電容組初始低電量實驗144 5.4.2超級電容組初始中電量實驗 154 5.4.3超級電容組初使高電量實驗 164 5.4.4不同超級電容初始荷電狀態下之功率使用範圍及能量消耗 174 第六章 結果與未來展望176 6.1 結論 176 6.2 未來展望 178 參考文獻 185 附錄 186 A參數表187 B電路原理圖 189

[1] International Energy Agency. “Global EV Outlook 2024.” 2024. https://www.iea.org/reports/global-ev-outlook-2024. License: CC BY 4.0.
[2] Y. Wang, L. Wang, M. Li, and Z. Chen, “A review of key issues for control and management in battery and ultra-capacitor hybrid energy storage systems,” eTransportation, vol. 4, p. 100064, 2020.
[3] J. Zheng, T. Jow, and M. Ding, “Hybrid power sources for pulsed current applications,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 1, pp. 288–292, 2001.
[4] Y. Wang, C. Liu, R. Pan, and Z. Chen, “Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator,” Energy, vol. 121, pp. 739–750, 2017.
[5] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 122–132, 2012.
[6] Q. Zhang and G. Li, “Experimental study on a semi-active battery-supercapacitor hybrid energy storage system for electric vehicle application,” IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 1014–1021, 2020.
[7] M. Bahloul and S. K. Khadem, “Impact of power sharing method on battery life extension in hess for grid ancillary services,” IEEE Transactions on Energy Conversion, vol. 34, pp. 1317–1327, Sept. 2019.
[8] X. Chen, W. Shen, Z. Cao, and A. Kapoor, “A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles,” Journal of Power Sources, vol. 246, pp. 667–678, 2014.
[9] H. Chaoui, N. Golbon, I. Hmouz, R. Souissi, and S. Tahar, “Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries,” IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1610–1618, 2015.
[10] C.-z. Liu, Q. Zhu, L. Li, W.-q. Liu, L.-Y. Wang, N. Xiong, and X.-y. Wang, “A state of charge estimation method based on h∞ observer for switched systems of lithium-ion nickel–manganese–cobalt batteries,” IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8128–8137, 2017.
[11] Y. Wang and Z. Chen, “A framework for state-of-charge and remaining discharge time prediction using unscented particle filter,” Applied Energy, vol. 260, p. 114324, 2020.
[12] Z. Song, H. Hofmann, J. Li, X. Han, and M. Ouyang, “Optimization for a hybrid energy storage system in electric vehicles using dynamic programming approach,” Applied Energy, vol. 139, pp. 151–162, 2015.
[13] H. Yin, C. Zhao, M. Li, and C. Ma, “Utility function-based real-time control of a battery ultracapacitor hybrid energy system,” IEEE Transactions on Industrial Informatics, vol. 11, no. 1, pp. 220–231, 2015.
[14] J. Shen and A. Khaligh, “Design and real-time controller implementation for a battery-ultracapacitor hybrid energy storage system,” IEEE Transactions on Industrial Informatics, vol. 12, no. 5, pp. 1910–1918, 2016.
[15] D. Xu, Q. Liu, W. Yan, and W. Yang, “Adaptive terminal sliding mode control for hybrid energy storage systems of fuel cell, battery and supercapacitor,” IEEE Access, vol. 7, pp. 29295–29303, 2019.
[16] D. F. Syahbana and B. R. Trilaksono, “MPC and filtering-based energy management in fuel cell/ battery/ supercapacitor hybrid source,” in 2019 International Conference on Electrical Engineering and Informatics (ICEEI), pp. 122–127, 2019.
[17] J. Wang, D. Xu, H. Zhou, and T. Zhou, “Adaptive fractional order sliding mode control for boost converter in the battery/supercapacitor HESS,” PLOS ONE, vol. 13, pp. 1–9, 04 2018.
[18] E. Farrokhi, P. Safari, and H. Ghoreishy, “A rule-based energy management strategy with current estimation for controlling grid connected hybrid energy storage system,” in 2023 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1–7, 2023.
[19] P. Simon and Y. Gogotsi, “Perspectives for electrochemical capacitors and related devices,” Nature Materials, vol. 19, no. 11, pp. 1151–1163, 2020.
[20] M. E. Şahin, F. Blaabjerg, and A. Sangwongwanich, “A comprehensive review on supercapacitor applications and developments,” Energies, vol. 15, no. 3, 2022.
[21] ZAHNER, ZENNIUM Datasheet. ZAHNER, Last accessed on 2023-4-9.
[22] IDRC 擎宏電子, DSP-HR Series DSP-HD Series 可程式直流電源供應器操作手冊. IDRC 擎宏電子, Last accessed on 2023-1-13.
[23] PRODIGIT 博計電子, 3310F 系列電子負載 (抽取式模組) 使用手冊. PRODIGIT 博計電子, Last accessed on 2023-1-13.
[24] National Instruments, NI 9211 Datasheet. National Instruments, Last accessed on 2023-5-24.
[25] GIANT FORCE, 環境測試設備系列規格書. GIANT FORCE, Last accessed on 2023-1-13.
[26] N. Corporation, ZM2353/ZM2354 Instruction Manual. NF Corporation.
[27] 新威科技, ABT-408T-5V6A-S1 Instruction Manual. 新威科技, Last accessed on 2019-2-1.
[28] PJRC, Teensy4 Specifications. PJRC.
[29] 陳璟安, 含熱效應之鋰離子電池等效電路模型. 國立臺灣科技大學機械工程所碩士論文, 2017, 台北.
[30] 李根, 以無跡型卡爾曼濾波器為基礎實現鋰離子電池充電狀態及溫度之及時估測. 國立臺灣科技大學機械工程所碩士論文, 2017, 台北.
[31] 周明憲, 以遞迴最小平方法結合無跡卡爾曼濾波器實現鋰離子電池參數、充電狀態、健康狀態及溫度之即時估測. 國立臺灣科技大學機械工程所碩士論文, 2021, 台北.
[32] 許碩祐, 利用無跡卡爾曼濾波器實現鋰離子電池充電狀態、溫度、健康狀態及剩餘壽命之即時估測. 國立臺灣科技大學機械工程所碩士論文, 2020, 台北.
[33] 鄭文欽, 含熱效應之超級電容等效電路模型. 國立臺灣科技大學機械工程所碩士論文, 2011,台北.
[34] 黃韋融, 超級電容非線性老化行為模式之建模. 國立臺灣科技大學機械工程所碩士論文, 2014,台北.
[35] H. Khalil, Nonlinear Systems. Pearson Education, Prentice Hall, 2002.
[36] A. El Aroudi, D. Giaouris, H. H.-C. Iu, and I. A. Hiskens, “A review on stability analysis methods for switching mode power converters,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 5, no. 3, pp. 302–315, 2015.
[37] A. Kuperman, I. Aharon, S. Malki, and A. Kara, “Design of a semiactive battery-ultracapacitor hybrid energy source,” IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 806–815, 2013.
[38] 李維軒, 以無跡型卡爾曼濾波器為基礎實現鋰離子電池充電狀態及溫度之及時估測. 國立臺灣科技大學機械工程所碩士論文, 2023, 台北.
[39] J. Snoussi, S. Ben Elghali, M. Benbouzid, and M. F. Mimouni, “Auto-adaptive filtering-based energy management strategy for fuel cell hybrid electric vehicles,” Energies, vol. 11, no. 8, 2018.
[40] 蔡少桓, 以遞迴最小平方法結合無跡卡爾曼濾波器實現鋰離子電池參數、充電狀態、健康狀態及溫度之即時估測. 國立臺灣科技大學機械工程所碩士論文, 2022,台北.
[41] E. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), pp. 153–158, 2000.
[42] R. Van Der Merwe and E. Wan, “Sigma-point Kalman filters for integrated navigation,” in Proceedings of the 60th Annual Meeting of The Institute of Navigation (ION), pp. 641–654, June 7-9 2004.
[43] R. Merwe and E. Wan, “Sigma-point Kalman filters for probabilistic inference in dynamic state-space models,” Proceedings of the Workshop on Advances in Machine Learning, 06 2003.
[44] J. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall International Editions, Prentice-Hall, 1991.
[45] X. Yu, Y. Feng, and Z. Man, “Terminal sliding mode control–an overview,” IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 36–52, 2021.
[46] A. Arisoy, M. Bayrakceken, S. Basturk, M. Gokasan, and O. Bogosyan, “High order sliding mode control of a space robot manipulator,” in Proceedings of 5th International Conference on Recent Advances in Space Technologies - RAST2011, pp. 833–838, 2011.
[47] B. Zhang and X. Gao, “Hybrid adaptive integral sliding mode speed control of PMSM system using RBF neural network,” in 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), pp. 17–22, 2020.
[48] Y. Huang and H. Wang, “Torque balance of dual-motor driven system based on equivalent switching variable structure sliding mode control,” in 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), pp. 2059–2062, 2020.
[49] G. Sun and S. Wang, “Command-filtered recursive sliding control of MIMO nonlinear systems with actuator saturation,” in 2017 Chinese Automation Congress (CAC), pp. 965–970, 2017.

無法下載圖示 全文公開日期 2029/08/15 (校內網路)
全文公開日期 2029/08/15 (校外網路)
全文公開日期 2029/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE