簡易檢索 / 詳目顯示

研究生: 范又方
You-Fang Fan
論文名稱: 基於遞迴最小二乘方法的無模型預測控制應用於功率硬體迴路模擬
Model-Free Predictive Control based on Recursive Least Squares Method Applied to Power Hardware-in-the-Loop Simulation
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 吳啟瑞
劉建宏
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 52
中文關鍵詞: 功率硬體迴路模擬功率放大器遞迴最小二乘方法
外文關鍵詞: Power-Hardware-In-the-Loop, Power Amplifier, Recursive Least Square method(RLS)
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功率硬體迴路(PHIL)是一種即時模擬形式,可以讓實際的待測電力設備與虛擬的電力系統進行互動模擬。在功率硬體迴路模擬中,待測電力設備(DUT)透過功率放大器和界面演算法連接到數位即時模擬器(RTS)。其中功率放大器通常使用開關模式功率放大器,因為它有較高的泛用性且容易實現,但也同時有較慢的動態響應。本文將基於遞迴最小二乘方法(RLS)的無模型預測控制方法應用到功率硬體迴路模擬中,可以改善其動態響應和性能。這個控制方法同時被建置在模擬及實作的功率硬體迴路系統中,以比較其與傳統控制方法的表現。此外,我們將2022年發生在金門的接地故障事件建模,並進行功率硬體迴路模擬以驗證其可行性。


    Power Hardware-in-the-loop(PHIL) is a form of real-time simulation that allows a real power device to interact with a simulated power system. In PHIL simulation, a DUT is connected to a real-time digital simulator via a power amplifier and interface algorithm. A switched-mode amplifier is commonly employed in the PHIL application because of its versatility and ease of setup. However, it is known to have a slow, dynamic response. This paper applies model-free predictive control based on the recursive least square(RLS) method to the PHIL simulation, which can improve the dynamic response and the performance of the PHIL. The control algorithms are implemented both in offline simulation and in an actual PHIL setup to verify the performance of the proposed control method. Finally, an actual fault event occurred at Kinmen is applied to PHIL simulation to verify the feasibility of PHIL simulation.

    摘要 i Abstract ii Contents iv List of Figures vi List of Tables ix Chapter1 Introduction 1 Chapter2 Power-Hardware-In-the-Loop(PHIL) 5 Chapter3 Control Method 24 Chapter4 Result and Discussion 34 Chapter5 Conclusion and Future work 49 Reference 50

    [1] P. Kotsampopoulos, F. Lehfuss, G. Lauss, B. Bletterie, and N. Hatziargyriou, The limitations of digital simulation and the advantages of phil testing in studying distributed generation provision of ancillary services, IEEE Transactions on Industrial Electronics, pp. 1-1, 08 2015.
    [2] M. D. Omar Faruque, T. Strasser, G. Lauss, V. Jalili-Marandi, P. Forsyth, C. Dufour, V. Dinavahi, A. Monti, P. Kotsampopoulos, J. A. Martinez, K. Strunz, M. Saeedifard, X. Wang, D. Shearer, and M. Paolone, Real-time simulation technologies for power systems design, testing, and analysis, IEEE Power and Energy Technology Systems Journal, vol. 2, no. 2, pp. 63-73, 2015.
    [3] J. Sun, C. Yin, J. Gong, Y. Chen, Z. Liao, and X. Zha, A stable
    and fast-transient performance switched-mode power amplier for a power hardware in the loop (phil) system, Energies, vol. 10, no. 10, 2017. [Online]. Available: https://www.mdpi.com/1996-1073/10/10/1569
    [4] N. D. Marks, W. Y. Kong, and D. S. Birt, Stability of a switched mode power amplier interface for power hardware-in-the-loop, IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 8445-8454, 2018.
    [5] A. Nelson, A. Nagarajan, K. Prabakar, V. Gevorgian, B. Lundstrom, S. Nepal, A. Hoke, M. Asano, R. Ueda, J. Shindo et al., Hawaiian electric advanced inverter grid support function laboratory validation and analysis, National Renewable Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2016.
    [6] A. von Jouanne, E. Agamloh, and A. Yokochi, Power hardwarein-the-loop (phil): A review to advance smart inverter-based gridedge solutions, Energies, vol. 16, no. 2, 2023. [Online]. Available:https://www.mdpi.com/1996-1073/16/2/916
    [7] T. Hatakeyama, A. Riccobono, and A. Monti, Stability and accuracy analysis of power hardware in the loop system with dierent interface algorithms, in 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), 2016, pp. 1-8
    [8] M. Pokharel and C. N. M. Ho, Stability analysis of power hardware-in-the-loop architecture with solar inverter, IEEE Transactions on Industrial Electronics, vol. 68, no. 5, pp. 4309-4319, 2021.
    [9] E. Guillo-Sansano, M. H. Syed, A. J. Roscoe, G. M. Burt, and F. Coele, Characterization of time delay in power hardware in the loop setups, IEEE Transactions on Industrial Electronics, vol. 68, no. 3, pp. 2703-2713, 2021.
    [10] F. Lehfuss, G. Lauss, P. Kotsampopoulos, N. Hatziargyriou, P. Crolla, and A. Roscoe, Comparison of multiple power amplication types for power hardware-in-the-loop applications, in 2012 Complexity in Engineering (COMPENG). Proceedings, 2012, pp. 1-6.
    [11] R. Heydari, H. Young, F. Flores-Bahamonde, S. Vaez-Zadeh, C. González-Castaño, S. Sabzevari, and J. Rodríguez, Model-free predictive control of gridforming inverters with lcl lters, IEEE Transactions on Power Electronics,vol. 37, no. 8, pp. 9200-9211, 2022.
    [12] K. Jha, S. Mishra, and A. Joshi, Boost-amplier-based power-hardware-in-theloop simulator, IEEE Transactions on Industrial Electronics, vol. 62, no. 12,pp. 7479-7488, 2015.
    [13] W. Ren, Accuracy evaluation of power hardware-in-the-loop (phil) simulation, Ph.D. dissertation, The Florida State University, 2007.
    [14] W. Ren, M. Steurer, and T. L. Baldwin, Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorithms, in 2007 IEEE/IAS Industrial Commercial Power Systems Technical Conference, 2007, pp. 1-7.
    [15] G. F. Lauss, M. O. Faruque, K. Schoder, C. Dufour, A. Viehweider, and J. Langston, Characteristics and design of power hardware-in-the-loop simulations for electrical power systems, IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 406-417, 2016.
    [16] M. Dargahi K., Stability analysis and implementation of power-hardware-inthe-loop for power system testing, Ph.D. dissertation, 03 2015
    [17] J. Rodriguez, J. Pontt, C. Silva, P. Cortes, U. Amman, and S. Rees, Predictive current control of a voltage source inverter, in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), vol. 3, 2004,pp. 2192-2196 Vol.3.
    [18] P. Cortes, J. Rodriguez, D. E. Quevedo, and C. Silva, Predictive current control strategy with imposed load current spectrum, IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 612-618, 2008.
    [19] J. Slotine and W. Li, Applied Nonlinear Control, ser. Prentice-Hall International Editions. Prentice-Hall, 1991. [Online]. Available: https://books.google.com.tw/books?id=HddxQgAACAAJ
    [20] H. Young, M. Perez, and J. Rodriguez, Analysis of nite-control-set model predictive current control with model parameter mismatch in a three-phase inverter, IEEE Transactions on Industrial Electronics, vol. 63, pp. 1-1, 05 2016.
    [21] S. L. Shah and W. R. Cluett, Recursive least squares based estimation schemes for self-tuning control, The Canadian Journal of Chemical Engineering, vol. 69, no. 1, pp. 89-96, 1991. [Online]. Available:
    https://onlinelibrary.wiley.com/doi/abs/10.1002/cjce.5450690111
    [22] B. Lundstrom and M. V. Salapaka, Optimal power hardware-in-the-loop interfacing: Applying modern control for design and verication of high-accuracy interfaces, IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 10388-10399, 2021.

    無法下載圖示 全文公開日期 2034/02/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE