簡易檢索 / 詳目顯示

研究生: Wang-Sung Yen
Wang-Sung Yen
論文名稱: 氮氣流量控制對氮化鋯與氮化鋁薄膜性質之研究
Properties of Aluminum Nitride and Zirconium Nitride Thin Films by Nitrogen Flow Control
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 郭俞麟
Yu-Lin Kuo
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 136
中文關鍵詞: 氮化鋯氮化鋁氮氣流量
外文關鍵詞: Aluminum Nitride, Zirconium Nitride, Nitrogen Flow Control
相關次數: 點閱:236下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於設計一陶瓷膜取代LIGA製程中所使用的高分子光阻,實驗初期以薄膜電阻率為首要考量條件,篩選現有的商用陶瓷鍍層,並選用薄膜電阻率最高的氮氧化鈦薄膜與次高的碳氮化鉻薄膜作為取代高分子光阻之陶瓷鍍層。
      由實用中發現,碳氮化鉻陶瓷薄膜容易受製程中的外力碰撞而損壞,因此後續考量了薄膜的機械性質。氮氧化鈦薄膜受外力碰撞而毀損的程度較小,因此將其薄膜特性,楊氏模數大於42.35 GPa、微硬度大於1.91 GPa、基材接著性小於HF2破裂等級,作為後續陶瓷鍍層所需具備的機械性質標準。
      經由薄膜電阻率與機械性質的考量,將氮氧化鈦薄膜實際應用於電鑄製程時發現,去光阻液會腐蝕氮氧化鈦薄膜使其絕緣性下降,且薄膜表面會出現許多裂痕,導致金屬結構沉積在陶瓷模具處。透過鹼液浸泡模擬去光阻步驟後發現,碳氮化鉻薄膜在鹼液浸泡72小時候,其薄膜電阻率下降的程度仍相當微小,僅由原先的2.99×10^4 Ω-cm下降至2.07×10^4 Ω-cm,因此將碳氮化鉻薄膜對去光阻液的腐蝕阻抗(5×10^7 Ωcm2)設為後續薄膜耐腐蝕性的判斷標準。
      綜觀上述結果整理出此應用下陶瓷薄膜所須具備的特性:(Ⅰ)絕緣性-防止電鑄時金屬沉積在模具處、(Ⅱ)機械性質-防止製程中的外力碰撞造成陶瓷薄膜毀損、(Ⅲ)破裂韌性-防止陶瓷薄膜在彎曲時破裂、(Ⅳ)與基材接著性-防止彎曲時陶瓷薄膜與基材剝離、(Ⅴ)耐腐蝕性-防止陶瓷薄膜在蝕刻製程時產生特性變化。
    由於上述量測的商用陶瓷薄膜,不易直接透過製程條件的調整以改善薄膜特性。因此本研究後續以工業中常用的硬質薄膜(氮化鈦、氮化鋯、氮化鉻、氮化鋁)為選擇對象,並在特性考量後選用氮化鋯以及氮化鋁作為實驗主軸,最終並預計使用濺鍍方法製備氮化鋁/氮化鋯多層膜,結合氮化鋯的高機械性質與氮化鋁的高絕緣阻抗,以達到上述薄膜特性。在反應式濺鍍中,影響薄膜特性最直接的參數就是反應氣體的多寡,因此本研究預先將反應氣體流量(氮氣)設定為變動參數,分別量測氮化鋁、氮化鋯系統的薄膜特性,並利用薄膜特性判斷後續濺鍍多層膜所需的製程參數。在反應氣體流量確定後,導入純金屬介層(Interlayer),目的在改善陶瓷薄膜與不鏽鋼金屬間異質接合所產生的不匹配性。
      本研究利用直流反應式磁控濺鍍製備氮化鋁與氮化鋯薄膜,並改變製程參數(1)固定通入的氬氣流量(10 sccm),改變氮氣流量(0、2.5、5、7.5、10、12.5 sccm)、(2)固定總濺鍍時間,改變金屬介層(5、10、15、20分鐘)與氮化物薄膜濺鍍時間。分別量測氮化鋯與氮化鋁薄膜的上述特性,並探討不同製程條件對薄膜特性造成的影響。
      結果顯示,氮化鋯薄膜在氮氣流量為2.5 sccm時,因具有最高的結晶度與較緻密的薄膜結構,使其也具有最高的楊氏模數(241.4 GPa)、微硬度(28 GPa)與破裂韌性(0.731 MPa√m),而這都遠高於由氮氧化鈦薄膜所訂定的機械性質標準,代表氮化鋯薄膜更不容易因製程中的外力碰撞而毀損。氮化鋁部分則是在氮氣流量為12.5 sccm時具有最高的薄膜電阻率(1.2×10^4 Ω-cm),這與文獻回顧的10^8 Ω-cm有不小的差距,這是因為本研究僅在室溫的基板溫度下濺鍍氮化鋁薄膜,因為結晶性不佳,使其特性不如文獻回顧般優秀。兩者與304不鏽鋼的接著性均為最佳的HF1等級、腐蝕阻抗部分(Z75S→4.91×10^7 Ωcm2,A50S→2.61×10^7 Ωcm2)也與碳氮化鉻所訂定的判斷標準差異不大,代表氮化鋯與氮化鋁薄膜均不易受去光阻液腐蝕而導致薄膜特性下降。
    在加入金屬介層的實驗當中發現,金屬介層的加入大致上均會降低上述的薄膜特性,這應與基材、金屬介層、陶瓷薄膜之間的殘留應力有關。而降低的薄膜特性唯獨在破裂韌性方面不同,鋁介層的加入能提升氮化鋁薄膜的破裂韌性。
    從實驗結果中發現,雖然反應氣體(氮氣)的多寡會顯著地影響薄膜特性,但基板溫度對結晶度與殘留應力的影響同樣也是決定薄膜特性的重要參數。


    The purpose of this study is to design a ceramic thin film to substitute the polymer resist used in LIGA process. The ceramic thin films must have the following characteristics:
    Resistivity – To prevent electroformed metal deposition on the die.
    Mechanical properties – To prevent the thin film ceramic from rupturing by the external forces
    Fracture toughness – To prevent the thin film ceramic from rupturing in bending step.
    Substrate adhesion – To prevent the separation of ceramic thin films and substrate.
    Corrosion resistance – To prevent the thin film ceramic from corrosion, during the etching process.
    Sputtering technique was used to prepare an aluminum nitride-zirconium nitride multilayer thin film. In order to achieve the thin film characteristics as stated above, we incorporated the high mechanical properties of zirconium nitride and high resistivity of aluminum nitride. The nitrogen flow and metal interlayer thickness are the parameters taken for the experimental study, and confirmation tests are carried out by measuring thin film properties of aluminum nitride and zirconium nitride respectively.
    A DC reactive magnetron sputtering is used to prepare an aluminum nitride and zirconium nitride thin film, and changing the experimental parameters:
    (1) Keeping the flow rate of argon constant (10 sccm) and varying the flow rate of nitrogen (0, 2.5, 5, 7.5, 10, 12.5sccm)
    (2) Keeping the total sputtering time constant and varying the metal interlayer (5, 10, 15, 20 minutes) and nitride films sputtering time.
    The results showed that 2.5 sccm nitrogen flow of zirconium nitride thin films has the highest Young's modulus (241.4GPa), micro-hardness (28GPa) and the fracture toughness (0.731 MPa√m). Aluminum nitride showed the highest resistivity (12058 Ω-cm), corrosion resistance (1.29×〖10〗^5 Ωcm2) when the nitrogen flow is at 10sccm. Both of zirconium nitride and aluminum nitride have the best substrate adhesion (HF1) with stainless steel.
    In metal interlayer experiments, added metal interlayer will influence the thin film properties. The decrease of the thin film properties is different in fracture toughness. Adding an aluminum interlayer can improve the fracture toughness of aluminum nitride thin films.
    From the experimental results, it showed that the amount of reaction gas (nitrogen) will significantly affect the thin film properties, substrate temperature can influence the crystallinity of the thin film and residual stress is also an important parameter to determine thin film characteristics.

    中文摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 14 1.1 前言 14 1.2 研究動機 15 第二章 文獻回顧 16 2.1電鑄 16 2.2 濺鍍 18 2.2.1 濺鍍種類 19 2.2.2薄膜成長機制 21 2.3 硬質薄膜 23 2.3.1 氮化鋯 23 2.3.2 氮化鋁 27 2.4薄膜機械性質量測 29 2.4.1 奈米壓痕量測原理 29 2.4.2奈米壓痕解析步驟 30 2.4.3影響奈米壓痕試驗的因素 31 第三章 實驗方法 33 3.1 實驗設計 33 3.2 實驗資訊 34 3.2.1 實驗藥品及規格 34 3.2.2 實驗儀器規格 35 3.3 實驗流程 37 3.4 磁控濺鍍系統與製程參數 38 3.5 分析儀器與分析實驗介紹 40 3.5.1 低角度高解析X光繞射儀(D8)-相分析、晶粒大小 40 3.5.2 場發射掃描是電子顯微鏡(FE-SEM)-膜厚、微觀結構 41 3.5.3 四點探針電性分析儀-薄膜電阻率 41 3.5.4 奈米壓痕儀-機械性質、薄膜破壞韌性 42 3.5.5 微小硬度儀-薄膜破壞韌性 44 3.5.6 洛氏硬度試驗儀-附著性 45 3.5.7交流阻抗分析儀-腐蝕阻抗 47 3.6 試片編號 47 第四章 結果與討論 49 4.1 建立薄膜特性標準 49 4.1.1 薄膜電阻率 49 4.1.2薄膜機械性質 50 4.1.3薄膜耐腐蝕特性 51 4.2 氮化鋯(Zirconium Nitride) 56 4.2.1 不同氮氣流量之氮化鋯膜厚分析 56 4.2.2 不同氮氣流量之氮化鋯原子比例分析 60 4.2.3 不同氮氣流量之氮化鋯表面粗糙度分析 61 4.2.4 不同氮氣流量之氮化鋯相成分分析 66 4.2.5 不同氮氣流量之氮化鋯機械性質分析 70 4.2.6 不同氮氣流量之氮化鋯破裂韌性分析 72 4.2.7 不同氮氣流量之氮化鋯電性分析 77 4.2.8 不同氮氣流量之氮化鋯與不鏽鋼接著性分析 79 4.2.9 不同氮氣流量之氮化鋯耐腐蝕分析 81 4.2.10 加入不同厚度之金屬鋯介層對氮化鋯特性影響 83 4.3 氮化鋁(Aluminum Nitride) 93 4.3.1不同氮氣流量之氮化鋁膜厚分析 93 4.3.2 不同氮氣流量之氮化鋁原子比例分析 96 4.3.3 不同氮氣流量之氮化鋁表面粗糙度分析 97 4.3.4不同氮氣流量之氮化鋁相成分分析 101 4.3.5不同氮氣流量之氮化鋁機械性質分析 104 4.3.6不同氮氣流量之氮化鋁破裂韌性分析 107 4.3.7不同氮氣流量之氮化鋁電性分析 110 4.3.8不同氮氣流量之氮化鋁與不鏽鋼接著性分析 112 4.3.9不同氮氣流量之氮化鋁耐腐蝕分析 114 4.3.10 加入不同厚度之金屬鋁介層對氮化鋁特性影響 116 4.3.11氮化鋁薄膜熱處理 126 第五章 結論 128 5.1 128 5.2 129 第六章 未來研究 132 參考文獻 133

    1. 趙崇禮,”奈米機械技術”,機械工業雜誌,297,P43(2006)
    2. A.J. Sanchez-Salmeron” Recent development in micro-handling systems for micro-manufacturing”, Journal of Materials Processing Technology 167 (2005) P499–507
    3. E. W. Becker, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process)” ,Microelectronic Engineering 4 (1986) 35-56
    4. 王福貞 ,”表面沉積技術” ,機械工業出版社pp.128-135(1987)
    5. Matthew C. Nielsen “Composite and Multilayered TaOx-TiOy High Dielectric Constant Thin Films”, Manufacturing Technology-part B, Vol. 21, No. 3,1998,p. 274-280.
    6. 翁睿哲 ,”以射頻磁控濺鍍氮化鉭薄膜製程條件對顯微結構及電性影響研究” ,國立成功大學材料科學與工程學系,碩士論文(2001)。
    7. Kunio Okimura,“Preparation of rutile TiO2 films by R.F. magnetron sputtering” , Journal ofApplied Physics, Vol. 34, 1995, pp. 4950-4955.
    8. A.Thornton, “Influence of apparatus and deposition conditions on the structure and topography of thick sputtered coatings”, J Vac. Sci. Technol., vol.11, N0.4, pp.666-670.(1974)
    9. 張秉書 ,”以非平衡磁控濺鍍法製備TiN硬質薄膜之研究” ,國立台灣師範大學工業教育學系,碩士論文
    10. P. Panjan ,“Oxidation of TiN, ZrN, TiZrN, erN, TiCrN and TiN/erN multilayer hard coatings reactively sputtered at low temperature”,Thin Solid Films 281-282 (1996) 298-301.
    11. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat.Technol.149, (2002)7.
    12. Dayong Cheng,” First-principles calculations of the elastic properties of ZrC and ZrN” , Journal of Alloys and Compounds 377 (2004) 221–224.
    13. J.-H. Huang” Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates” , Materials Chemistry and Physics 77 (2002) 14–21.
    14. S. Horita, T. Tujikawa, “Material properties of a ZrNx film on silicon prepared by ion-assisted deposition method”, J. Vac. Sci. Technol. A, 11 (1993) P 2452.
    15. H. O. Pierson, “Handbook of refractory carbides and nitrides”, Noyes Publications, New Jersey,(1996).
    16. T. Yotsuya, M. Yoshitake,” Low-Temperature Thermometer Using Sputtered ZrNx Thin Film Cryogenics”, Vol. 37(1998),P 817.
    17. H. Holleck, “Material selection for hard coatings” , J. Vac. Sci. Technol.(1986) P2661.
    18. V. A. Mernagh, “A benzene-thermal synthesis of powdered cubic zirconium nitride”, Surf. Coat. Technol., 49(1991), P 462.
    19. H. E. Hintermann, “Thin solid films to combat friction, wear, and corrosion”, J. Vac. Sci. Technol. B,(1986),P 816.
    20. T. Yotsuya, M. Yoshitake, J. Yamamoto, “New type cryogenic thermometer using sputtered Zr-N films”, Appl. Phys. Lett., 51 (1987) P 235.
    21. B.M. Takeyama ,“High performance of thin nano-crystalline ZrN diffusion barriers in Cu/Si contact systems”,Appl. Surf Sci., 190(2002),P 450.
    22. L. Pichon, T. Girardeau, “Ion beam assisted deposition of zirconium nitrides for modulated optical index structures”, Phys. Res. B, 147 (1999),P 378.
    23. V. N. Zhitomirsky ,“Vacuum arc deposition and microstructure of ZrN-based coatings”, Surf. Coat. Technol.,(1997), P 94-95.
    24. M. B. Lee ,“Epitaxial growth of highly crystalline and conductive nitride films by pulsed laser deposition”, Jpn. J. Appl. Phys., 33 (1994) ,P 6308.
    25. B. Karlsson,“Optical properties of CVD-coated TiN, ZrN and HfN”, Solar Energy Mater(1983) ,P 401.
    26. E. Ruiz, P. Alemany,“Electronic structure and properties of AlN”,physical Review B, P 7115-7128
    27. K. Kuo, G.W. Auner,“ Microstructure and thermal conductivity of epitaxial AlN thin films”, Thin Solid Films, vol. 253(1994),P223-227.
    28. H. Okanoet ,“Preparation of aluminum nitride thin film by reactive sputtering and their applications to GHz-band surface acoustic wave devices”, Appl. Phys. Lett, vol. 64(1994),P 166-168.
    29. H. Morkoc,“Large-band-gap SiC, Ⅲ-Ⅴ nitride and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies”, J. Appl. Phys ,vol. 76(1994),P1363-1383.
    30. LI XINJIAO,” ON THE PROPERTIES OF AlN THIN FILMS GROWN BY LOW TEMPERATURE REACTIVE R.F. SPUTTERING” , Thin Solid Films, 139 (1986) 261-274
    31. T.O., M.T., “Synthesis of aluminum nitride sintered bodies using the direct nitridation of Al compacts”, Journal of the European Society, vol. 20,(2002) P783-787.
    32. 顏豐明, “高熱傳導率氮化鋁基板材料之簡介”,材料與社會,第73期,(1997) P45-46
    33. R. Rodriguez ,“Morphological properties of chemical vapor deposited AlN films”, Journal of Crystal Growth, vol.133(1993),P 59-70.
    34. Jianning DingU, “Mechanical properties and fracture toughness of multilayer hard coatings using nanoindentation”,Thin Solid Films 371(2000)P 178~182
    35. Sneddon ,”The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile”, Int. J. Eng. P 47-56.
    36. Oliver, W.C., and Pharr, G.M. ,”An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments”, J Mater. Res.,7(1992),P 1564-1583
    37. Philippe K. Zysset ,”Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur”, Journal of Biomechanics 32(1999)P 1005~1012
    38. Nix, W.D,” Indentation size effects in crystalline: a few for strain gradient plastic”, J. Mech. Phys. Solids. 3, 46, P 411~425, 1998.
    39. 汪建民,”材料分析”,中國材料科學學會,(1998)
    40. W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res., 7(1992),P 1564.
    41. 郭正次,朝春光,”奈米結構材料科學”,全華科技圖書(2004)
    42. Karimi, A. ,”Fracture mechanics in nanoscale layered hard thin films”, Thin Solid Films ,P 275-280.
    43. Li X., Diao D. ,”Fracture nanoindentation, mechanisms of thin amorphous carbon films”,Acta Mater. 45,P 4453-4461.
    44. M.B. Assouar ,” Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices” ,Diamond and Related Materials11,P413–417
    45. M. Nose,” Colorimetric properties of ZrN and TiN coatings prepared by DC reactive sputtering” , Surface and Coatings Technology 142-144 ,P221-217
    46. Jianning DingU,” Mechanical properties and fracture toughness of multilayer hard coatings using nanoindentation” , Thin Solid Films 371 (2000) ,P178-182
    47. Jia-Hong Huang,” Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by HCD Ion Plating” ,國立清華大學(2002)
    48. Ge-Ping Yu ,” Characteristics of Structure and Properties of Nano-crystalline ZrN thin films: Effects of Texture and Zr Interlayer” ,國立清華大學 (2008)
    49. B. Subramanian ,” Microstructural, Tribological and Electrochemical Corrosion Studies on Reactive DC Magnetron Sputtered Zirconium Nitride Films with Zr Interlayer on Steel” , Met. Mater. Int., Vol. 18, No. 6 (2012), pp. 957~964
    50. Rwei-Ching Chang ,”應用奈米刮痕法探討不同溫度下薄膜的強度與破壞分析” ,國科會研究報告(2007)

    51. Lili Hu,” Influence of N2:(N2 t Ar) flow ratio and substrate temperature on the properties of zirconium nitride films prepared by reactive dc magnetron sputtering”, Applied Surface Science 220 (2003) 367–371
    52. X. Barnett ,Journal of Applied Physics ,77(9)(1995)4403-4411
    53. S. Zhang ,Surface and Coating Technology ,198(2005)2-8

    無法下載圖示 全文公開日期 2020/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE