簡易檢索 / 詳目顯示

研究生: 古聖偉
sheng-wei gu
論文名稱: 反應性濺鍍氮化鋯薄膜及其作為銅導線之阻障層的失效機制研究暨以鎳電極系統作為生物感測器
Growth of ZrNx Films by Reactive Sputtering and Investigation of Failure Mechanism as A Barrier Layer of Copper Metallization and Biosensors Base on Nickel Electrodes
指導教授: 李嘉平
Chiapyng Lee
口試委員: 王孟菊
Meng-Jiy Wang
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 142
中文關鍵詞: 擴散阻障層氮化鋯內接線氮氣流量比葡萄糖生物感測器幾丁聚醣溶膠-凝膠矽酸四乙酯
外文關鍵詞: Diffusion barrier, ZrN, Interconnect, Nitrogen flow ratio, Nickel, Glucose biosensor, Chitosan, Sol gel, Tetraethyl orthosilicate
相關次數: 點閱:934下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別就兩個主題進行研究討論:一為反應性濺鍍氮化鋯薄膜及其作為銅導線之阻障之研究,另一為以鎳電極系統作為生物感測器。
    有關於擴散阻障層的部分,VLSL技術的發展,常利用銅作為內接線材料,但在低溫中,銅會與矽發生反應,形成銅矽化合物(Cu-Si compounds),此化合物容易導致元件失效,因此需要擴散阻障層來防止銅擴散到矽。由於低電阻率及低的生成熱,氮化鋯具備作為阻障層的潛力。本文採用濺鍍儀製備氮化鋯薄膜,並研究改變氮氣流率對氮化鋯薄膜微結構、晶體結構、組成以及電性的影響。阻障層失效之機制研究是用Cu(60 nm)/ZrNX(25 nm)/Si多層膜進行退火分析。使用四點探針分析片電阻變化率、X-繞射儀分析結晶結構、X光光電子能譜儀的縱深分析可得各元素分佈圖、掃描式電子顯微鏡可觀察材料表面型態,依據以上儀器的量測結果,確認銅穿透過阻障層與矽反應的失效溫度。結果顯示,隨N2/Ar流量比增加失效溫度會上升,會使得氮化鋯的沉積速率以階梯變化下降、結晶結構由hexagonal-Zr變成NaCl-ZrN及電阻率會上升。根據XPS分析結果,在N2/Ar流量比大於0.07時,薄膜組成趨近於計量比。在N2/Ar流量比為0~0.07時,晶粒尺寸會隨氮氣量增加而減少,但在0.07以後不再有明顯的變化。ZrN 薄膜中氮原子含量越多,失效溫度就越高。實驗結果顯示ZrN0.96為最好的阻障層,在800 °C下退火30分鐘時,能有效阻擋銅的擴散。
    在生物感測器的部分,由於糖尿病是常見的疾病,若人體的血糖值超過或低於人體的正常值80-120 mg/dL (4.4-6.6 mM) 時,會造成心臟病、腎功能衰竭及失明等疾病。因此葡萄糖生物感測器在偵測血糖值扮演著重要的角色。本篇利用溶膠(sol-gel)及幾丁聚醣(chitosan)所合成的複合材料固定酵素,製作低成本且簡單的葡萄糖生物感測器。同時基於成本考量,本論文成功設計並製造出鎳電極,以取代傳統常用的貴重金屬材料,如金、白金等。使用計時安培法探討包埋膜配方、施加於工作電極的電位、酵素於固定層中的含量、以及溶液中電子傳遞物質等參數,對葡萄糖生物感測器性能的影響,並找到其最佳性能。實驗結果顯示以貴重金屬的奈米粒子改質之碳管來修飾電極,能夠增加電極表面積,使電流的訊號變強。葡萄糖生物感測器的最適化配方為TEOS:H2O:chitosan=100:275:1.28、以0.25 V的施加電位、20 unit的酵素固定量以及75 mM的溶液中電子傳遞物質濃度。葡萄糖生物感測器的反應時間為( 5 s ),並具適當的線性範圍2.99~37.50 mM (R-square=0.9916),高的靈敏度(2.80 μA/mM),偵測極限為0.5 mM (S/N>3),Michaelis-Menten常數為38 mM。


    Two topics were investigated in this thesis: diffusion barrier and nickel based biosensor.
    For the preparation of diffusion barrier, Cu thin films for interconnect applications in VLSI technology have become a very popular technique. However, at relatively low temperatures, Cu reacts with Si to form a Cu-Si compound leading the break down of devices. Therefore, there is a need to develop a thin diffusion barrier film for the prevention of Cu diffusion into silicon. ZrN is a promising candidate for a diffusion barrier material due to its low electrical resistivity and large negative heat of formation. The ZrNX films were prepared by reactive sputtering. This work presents the effects of nitrogen flow rate on the microstructure, crystalline structure, composition and electrical properties of ZrNX films. The multilayers of Cu(60 nm)/ZrNX(25 nm)/Si after thermal annealing were adopted to conduct failure mechanism analyses. In this study, differnet analytical tools were utilized including four point probe (FPP), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) to analyze the changing rate of sheet resistance, crystalline structure, element distribution of depth profile and microscopic images, respectively. Based on the above measurements, it was identified that the failure temperature leading Cu to pass through diffusion barrier and to react with Si. The results showed that the increased N2/Ar flow ratio resulted in the deposition rate of ZrNX films decreased with stairway variation, the changes of crystalline structure from hexagonal-Zr to NaCl-ZrN, and an increased resistivity, respectively. Based on the XPS analyses, ZrNX showed a near-stoichiometric composition when N2/Ar flow ratio is 0.07. The grain size of the ZrNX decreased with increasing N2/Ar flow ratio while N2/Ar flow ratio was 0~0.07, and no significant change when N2/Ar flow ratio was larger than 0.07. The More nitrogen composition of ZrNX resulted in a larger failure temperature. Finally, ZrN0.96 possessed the best barrier performance that can prevent Cu to react with Si up to 800 °C for 30 min.
    The second part of this thesis. Diabetes mellitus is a worldwide public health problem which is the cause of heart disease, kidney failure, blindness, etc. These symptom reflected by blood glucose concentration higher or lower than the normal range of 80-120 mg/dL (4.4-6.6 mM). Amperometric enzyme electrodes, based on glucose oxidase (GOX), played a leading role in the blood sugar test. This work presented a low cost and simple method for the fabrication of glucose biosensor. The biosensor was constructed by entrapping glucose oxidase in chitosan/silica sol-gel hybrid membranes (CSHMs) on a new type of nickel electrode. The immobilization of enzymes has been widely used in organic-inorganic technology which was prepared from tetraethyl orthosilicate (TEOS) and water under hydrolysis by hydrocholoric acid as catalyst and, then mixed with chitosan solution. On the basis of economic considerations, the nickel electrode was designed and successfully fabricated in this study to replace noble metal materials such as gold and platinum. The amperometric technique was used to investigate the effects of operational parameters such as CSHMs composition, the operating potential of the working electrode, enzyme loading, and mediator concentration on performance of the glucose biosensor. Experimental results indicated that a noble metal nanoparticles/carbon nanotube nanohybrids was introduced to biosensor systems which can increase electrode surface area and enlarge the current responses. The optimized conditions for the fabricated in glucose biosensor were CSHMs composition ratio of (TEOS:H2O:Chit=100:275:1.28), the applied potential (0.25 V), the enzyme loading (20 unit) and mediator concentration (75mM). The biosensors exhibited the fast amperometric response (within 5s), a good linearly range from 2.99 mM to 37.50 mM glucose concentration (R=0.9916), a higher sensitivity (2.80 μA/mM) and a detection limiting 0.5 mM (S/N>3). The apparent Michaelis-Menten constant (KMapp) for biosensor was 38 mM.

    摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章、緒論 主題一:擴散阻障層 1.1、深次微米元件導線需求 1.2、金屬導線材料的選擇 1.3、研究動機 主題二:生物感測器 1.4、前言 1.5、研究架構與目的 第二章、文獻回顧 主題一、擴散阻障層 2.1、擴散阻障層的選擇 2.2、ZrNX薄膜 主題二、生物感測器 2.3、何謂生物感測器 2.4、三代及非酵素型葡萄糖感測器簡介 2.4.1、第一代葡萄糖生物感測器 2.4.2、第二代葡萄糖生物感測器 2.4.3、第三代葡萄糖生物感測器 2.4.4、非酵素型萄糖生物感測器 2.5、電化學式生物感測器製作技術簡介 2.5.1、厚膜技術(thick film technology) 2.5.2、薄膜技術(thin film technology) 2.6、酵素固定化的方法 2.7、以鎳電極製作生物感測器的文獻回顧 第三章、實驗方法 主題一:擴散阻障層 3.1、實驗設備 3.2、分析儀器 3.3、實驗材料及藥品 3.4、實驗流程 3.4.1、ZrNx薄膜的材料分析 3.4.2、Cu(60nm)/ZrNx(25nm)/Si 多層膜系統之擴散阻障層分析 主題二:生物感測器 3.5、實驗設備 3.5.1、薄膜製程-磁控射頻濺鍍系統 3.5.2、厚膜製程-半自動網印機台 3.6、實驗材料、藥品與分析儀器 3.6.1、濺鍍實驗材料 3.6.2、製備感測器實驗材料 3.6.3、實驗藥品 3.6.4、分析儀器 3.7、電化學實驗架構圖 3.8、平面電極製作 3.8.1、網版設計 3.8.2、電極製作流程-整合網印製程、薄膜製程、舉離(Lift-off)製程 3.9、包埋法酵素電極製作 3.9.1、配置sol gel-chitosan-GOx混和溶液 3.10、樣品溶液及其他溶液配製 3.10.1、磷酸鹽緩衝溶液(phosphate buffered solution,PBS) 42 3.10.2、葡萄糖溶液配製 3.10.3、干擾測試的溶液配製 3.11、電化學分析 第四章、擴散阻障層的結果與討論 4.1、ZrNX 薄膜材料分析 4.1.1、ZrNX 薄膜的掃描式電子顯微鏡(SEM)截面圖分析 4.1.2、ZrNX 薄膜的X光光電子能譜儀(XPS)分析 4.1.3、ZrNX 薄膜的X光繞射儀(XRD)分析 4.1.4、ZrNX 薄膜穿透式電子顯微鏡(TEM)分析 4.1.5、ZrNx薄膜之四點探針(FPP)分析 4.1.6、ZrNx薄膜之原子力顯微鏡(AFM)及SEM平面分析 4.2、Cu(60 nm)/ZrNx(25 nm)/Si 多層膜系統之擴散阻障層分析4.2.1、Cu (60 nm)/ZrNx (25 nm)/Si多層膜系統之FPP分析4.2.2、Cu(60 nm)/ZrNx(25 nm)/Si多層膜系統之XRD分析 4.2.3、Cu(60 nm)/ZrNx(25 nm)/Si多層膜系統之SEM分析 4.2.4、Cu(60 nm)/ZrN0.96(25 nm)/Si 多層膜矽統的XPS縱深分佈分析 4.2.5、各退火分析整理表 第五章、生物感測器的結果與討論 5.1、鎳電極的材料分析 5.1.1、Ni薄膜的厚度分析與片電阻分析 5.1.2、Ni薄膜的XPS分析 5.1.3、Ni薄膜的AFM與SEM表面分析 5.1.4、Ni薄膜的XRD分析 5.2、實驗參數最佳化研究 5.2.1、包埋酵素膜中的chitosan含量最佳化 5.2.2、工作電極的施加電位最佳化 5.2.3、電極表面酵素固定量最佳化 5.2.4、溶液中的電子傳遞物質濃度最佳化 5.2.5、電極表面修飾最佳化 5.3、最佳化的葡萄糖生物感測器動力學及循環伏安分析 5.3.1、Michaelic-Menten常數 5.3.2、掃描速率效應 5.3.3、不同分析物濃度的循環伏安分析 5.3.4、不同修飾電極的交流阻抗分析 5.3.5、干擾測試 5.3.6、與文獻電極比較 第六章、結論 主題一:擴散阻障層 主題二:生物感測器 參考文獻

    1. 莊達人, VLSI 製造技術. 2005: p. 1.
    2. Baklanov, M. R. and K. Maex, Porous low dielectric constant materials for microelectronics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006. 364(1838): p. 201-215.
    3. Cu-Si phase diagram
    http://www.factsage.cn/fact/documentation/FScopp/FScopp_list.htm.
    4. Shacham-Diamand, Y., J. Li, J. O. Olowlafe, S. Russel, Y. Tamou, and J. W. Mayer. Oxidation and thermal stability of thin film copper layers. in Proceedings Ninth Biennial University/Government/Industry Microelectronics Symposium. 1991.
    5. 林俊成, RF濺鍍成長TaNx薄膜及其在積體電路之銅製程上的應用. 1996.
    6. Cho, S., K. Lee, P. Song, H. Jeon, and Y. Kim, Barrier characteristics of ZrN films deposited by remote plasma-enhanced atomic layer deposition using tetrakis(diethylamino)zirconium precursor. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2007. 46(7 A): p. 4085-4088.
    7. Bae, N. J., K. I. Na, H. I. Cho, K. Y. Park, S. E. Boo, J. H. Bae, and J. H. Lee, Thermal and electrical properties of 5-nm-thick TaN film prepared by atomic layer deposition using a pentakis(ethylmethylamino)tantalum precursor for copper metallization. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2006. 45(12): p. 9072-9074.
    8. The International Technology Roadmap for Semiconductors. 2009.
    9. Wang, Y., C. h Zhao, F. Cao, and D. w Yang, Barrier capability of Zr-N films with different density and crystalline structure in Cu/Si contact systems. Materials Letters, 2008. 62(21-22): p. 3761-3763.
    10. 台灣糖尿病協會與糖尿病防治 http://homepage.vghtpe.gov.tw/~meta/hospital/about-1.htm.
    11. 金屬價格.
    http://www.goldsearch.com.au/investors/goldprice.html.
    12. Nicolet, M. A., Diffusion barriers in thin films. Thin Solid Films, 1978. 52(3): p. 415-443.
    13. Hecker, M., D. Fischer, V. Hoffmann, H. J. Engelmann, A. Voss, N. Mattern, C. Wenzel, C. Vogt, and E. Zschech, Influence of N content on microstructure and thermal stability of Ta-N thin films for Cu interconnection. Thin Solid Films, 2002. 414(2): p. 184-191.
    14. Chen, C. W., J. S. Chen, and J. S. Jeng, Characteristics of thermally robust 5 nm Ru-C Diffusion barrier/cu seed layer in cu metallization. Journal of the Electrochemical Society, 2009. 156(9): p. H724-H728.
    15. Tu, K. N. and D. A. Chance, Thin-film reactions of Pb with AgAu and AgPd alloys. Journal of Applied Physics, 1975. 46(8): p. 3229-3234.
    16. Tu, K. N. and R. Rosenberg, Mass transport in layered polycrystalline thin films. Thin Solid Films, 1972. 13(1): p. 163-167.
    17. Hu, C. K. and J. M. E. Harper, Copper interconnections and reliability. Materials Chemistry and Physics, 1998. 52(1): p. 5-16.
    18. Ruan, J. L., D. F. Lii, J. S. Chen, and J. L. Huang, Investigation of substrate bias effects on the reactively sputtered ZrN diffusion barrier films. Ceramics International, 2009. 35(5): p. 1999-2005.
    19. Wang, S. H., C. C. Chang, and J. S. Chen, Effects of substrate bias and nitrogen flow ratio on the resistivity, density, stoichiometry, and crystal structure of reactively sputtered ZrN x thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004. 22(5): p. 2145-2151.
    20. Ruan, J. L., D. F. Lii, H. H. Lu, J. S. Chen, and J. L. Huang, Microstructural and electrical characteristics of reactively sputtered ZrNx thin films. Journal of Alloys and Compounds, 2009. 478(1-2): p. 671-675.
    21. Wang, Y., C. Zhao, F. Cao, and L. Shao, Effect of substrate temperature on the thermal stability of Cu/Zr-N/Si contact system. Materials Letters, 2008. 62(15): p. 2289-2292.
    22. Wang, Y., F. Cao, M. h Ding, and Y. t Liu, Diffusion barrier performance of Zr-N/Zr bilayered film in Cu/Si contact system. Microelectronics Reliability, 2008. 48(11-12): p. 1800-1803.
    23. Castillo, J., S. Gáspár, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S. A. Dorneanu, A. D. Ryabov, and E. Csöregi, Biosensors for life quality - Design, development and applications. Sensors and Actuators, B: Chemical, 2004. 102(2): p. 179-194.
    24. Chaubey, A. and B. D. Malhotra, Mediated biosensors. Biosensors and Bioelectronics, 2002. 17(6-7): p. 441-456.
    25. Toghill, K. E. and R. G. Compton, Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. International Journal of Electrochemical Science. 5(9): p. 1246-1301.
    26. Shen, J., L. Dudik, and C. C. Liu, An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators, B: Chemical, 2007. 125(1): p. 106-113.
    27. Sung, W. J., K. Na, and Y. H. Bae, Biocompatibility and interference eliminating property of pullulan acetate/polyethylene glycol/heparin membrane for the outer layer of an amperometric glucose sensor. Sensors and Actuators, B: Chemical, 2004. 99(2-3): p. 393-398.
    28. Yang, M., Y. Yang, G. Shen, and R. Yu, Microbiosensor for acetylcholine and choline based on electropolymerization/sol-gel derived composite membrane. Analytica Chimica Acta, 2005. 530(2): p. 205-211.
    29. Yuan, C. J., C. L. Hsu, S. C. Wang, and K. S. Chang, Eliminating the interference of ascorbic acid and uric acid to the amperometric glucose biosensor by cation exchangers membrane and size exclusion membrane. Electroanalysis, 2005. 17(24): p. 2239-2245.
    30. Deng, C., M. Li, Q. Xie, M. Liu, Y. Tan, X. Xu, and S. Yao, New glucose biosensor based on a poly(o-phenylendiamine)/glucose oxidase-glutaraldehyde/Prussian blue/Au electrode with QCM monitoring of various electrode-surface modifications. Analytica Chimica Acta, 2006. 557(1-2): p. 85-94.
    31. Miao, Y., J. Chen, and Y. Hu, Electrodeposited nonconducting polytyramine for the development of glucose biosensors. Analytical Biochemistry, 2005. 339(1): p. 41-45.
    32. Xu, J. J., Z. H. Yu, and H. Y. Chen, Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion. Analytica Chimica Acta, 2002. 463(2): p. 239-247.
    33. Dong, S., B. Wang, and B. Liu, Amperometric glucose sensor with ferrocene as an electron transfer mediator. Biosensors and Bioelectronics, 1992. 7(3): p. 215-222.
    34. Ghica, M. E. and C. M. A. Brett, Development of a carbon film electrode ferrocene-mediated glucose biosensor. Analytical Letters, 2005. 38(6): p. 907-920.
    35. Ming, L., X. Xi, and J. Liu, Electrochemically platinized carbon paste enzyme electrodes: A new design of amperometric glucose biosensors. Biotechnology Letters, 2006. 28(17): p. 1341-1345.
    36. Zhang, Z., H. Liu, and J. Deng, A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode. Analytical Chemistry, 1996. 68(9): p. 1632-1638.
    37. Wang, J., J. Liu, L. Chen, and F. Lu, Highly selective membrane-free, mediator-free glucose biosensor. Analytical Chemistry, 1994. 66(21): p. 3600-3603.
    38. Rivas, G. A. and B. Maestroni, Iridium-dispersed carbon paste amino acid oxidase electrodes. Analytical Letters, 1997. 30(3): p. 489-501.
    39. Comba, F. N., M. D. Rubianes, P. Herrasti, and G. A. Rivas, Glucose biosensing at carbon paste electrodes containing iron nanoparticles. Sensors and Actuators, B: Chemical. 149(1): p. 306-309.
    40. Tsujimura, S., S. Kojima, K. Kano, T. Ikeda, M. Sato, H. Sanada, and H. Omura, Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Bioscience, Biotechnology and Biochemistry, 2006. 70(3): p. 654-659.
    41. Lau, K. T., S. A. L. De Fortescu, L. J. Murphy, and J. M. Slater, Disposable glucose sensors for flow injection analysis using substituted 1,4-benzoquinone mediators. Electroanalysis, 2003. 15(11): p. 975-981.
    42. Loughran, M. G., J. M. Hall, and A. P. F. Turner, Development of a Pyrroloquinoline Quinone (PQQ) Mediated Glucose Oxidase Enzyme Electrode for Detection of Glucose in Fruit Juice. Electroanalysis, 1996. 8(10): p. 870-875.
    43. Cass, A. E. G., G. Davis, G. D. Francis, H. Allen O Hill, W. J. Aston, I. John Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry®, 1984. 56(4): p. 667-671.
    44. Heller, A., Electrical wiring of redox enzymes. Accounts of Chemical Research, 1990. 23(5): p. 128-134.
    45. Degani, Y. and A. Heller, Direct electrical communication between chemically modified enzymes and metal electrodes. 1. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. Journal of Physical Chemistry, 1987. 91(6): p. 1285-1289.
    46. Liu, J., A. Chou, W. Rahmat, M. N. Paddon-Row, and J. J. Gooding, Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis, 2005. 17(1): p. 38-46.
    47. Willner, I., V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, A.F. Bückmann, and A. Heller, Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. Journal of the American Chemical Society, 1996. 118(42): p. 10321-10322.
    48. Park, S., H. Boo, and T. D. Chung, Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 2006. 556(1): p. 46-57.
    49. Wilson, R. and A. P. F. Turner, Glucose oxidase: An ideal enzyme. Biosensors and Bioelectronics, 1992. 7(3): p. 165-185.
    50. 陳冠榮, 以奈米金修飾電極製備電流式免疫型感測器. 2008.
    51. Taufik, p., Fabrication of a disposable glucose biosensor on screen-printed carbon electrodes. 國立台灣科技大學化學工程系碩士班論文, 2008.
    52. 施敏, 半導體元件物理與製作技術. 國立交通大學出版社, 2007.
    53. 劉英俊,汪金追, 酵素工程. 1995.
    54.陳詩喆, 電流式葡萄糖生物感測器之製備及測試. 2009.
    55. Fleischmann, M., K. Korinek, and D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution. Journal of Electroanalytical Chemistry, 1971. 31(1): p. 39-49.
    56. 邱鴻錡, TaNX薄膜之材料及擴散阻障層分析. 2009.
    57. Ohring, Milton, The Materials Science of Thin Films 1992.
    58. Habib, S. K., A. Rizk, and I. A. Mousa, Physical parameters affecting deposition rates of binary alloys in a magnetron sputtering system. Vacuum, 1998. 49(2): p. 153-160.
    59. Lin, J. C., G. Chen, and C. Lee, Growth of tantalum nitride films on Si by radio frequency reactive sputtering: Effect of N2/Ar flow ratio. Journal of the Electrochemical Society, 1999. 146(5): p. 1835-1839.
    60. Chen, J. K., C. H. Chan, and F. C. Chang, TaNx thin films deposited through various flow ratios of N 2/Ar for copper barrier properties. Journal of the Electrochemical Society, 2008. 155(11): p. H852-H857.
    61. Ellwanger, R. C. and J. M. Towner, The deposition and film properties of reactively sputtered titanium nitride. Thin Solid Films, 1988. 161: p. 289-304.
    62. Anitha, V. P., S. Major, D. Chandrashekharam, and Mukesh Bhatnagar, Deposition of molybdenum nitride thin films by r.f. reactive magnetron sputtering. Surface and Coatings Technology, 1996. 79(1-3): p. 50-54.
    63. Shinoki, F. and A. Itoh, Mechanism of rf reactive sputtering. Journal of Applied Physics, 1975. 46(8): p. 3381-3384.
    64. J.F.Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Inc. 1995.
    65. Benia, H. M., M. Guemmaz, G. Schmerber, A. Mosser, and J. C. Parlebas, Investigations on non-stoichiometric zirconium nitrides. Applied Surface Science, 2002. 200(1-4): p. 231-238.
    66. Yoshitake, Masaaki, Tsutom Yotsuya, and Soichi Ogawa, Effects of nitrogen pressure and RF power on the properties of reactive magnetron sputtered Zr-N films and an application to a thermistor. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 1992. 31(12 A): p. 4002-4009.
    67. JCPDS Files Card no. 65-3366.
    68. JCPDS Files Card no. 65-972.
    69. 張勁燕, 電子材料. 2004: p. 176-177.
    70. JCPDS Files Card no. 1-1242.
    71. JCPDS Files Card no. 65-461.
    72. 楊春美, 濺鍍氮化鋯擴散阻礙層特性之研究. 2001: p. 29-29.
    73. Jeng, J. S., S. H. Wang, and J. S. Chen, Effects of substrate bias and nitrogen flow ratio on the resistivity and crystal structure of reactively sputtered Zr Nx films at elevated temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007. 25(4): p. 651-658.
    74. Barin, I., Thermochemical Data of Pure Substances. 1995: p. 1732.
    75. JCPDS Files Card no. 51-916.
    76. JCPDS Files Card no. 9-226
    77. JCPDS Files Card no. 6-582
    78. JCPDS Files Card no. 14-368
    79. Chen, J. S. and J. L. Wang, Diffusion barrier properties of sputtered TiB2 between Cu and Si. Journal of the Electrochemical Society, 2000. 147(5): p. 1940-1944.
    80. Fang, J. S., T. P. Hsu, M. L. Ker, H. C. Chen, J. H. Lee, C. S. Hsu, and L. C. Yang, Evaluation of properties of Ta-Ni amorphous thin film for copper metallization in integrated circuits. Journal of Physics and Chemistry of Solids, 2008. 69(2-3): p. 430-434.
    81. Majumder, P. and C. Takoudis, Reactively sputtered Mo-V nitride thin films as ternary diffusion barriers for copper metallization. Journal of the Electrochemical Society, 2008. 155(10): p. H703-H706.
    82. Yang, C. Y. and J. S. Chen, Investigation of copper agglomeration at elevated temperatures. Journal of the Electrochemical Society, 2003. 150(12): p. G826-G830.
    83. Miller, K. T., F. F. Lange, and D. B. Marshall, Instability of polycrystalline thin films. Experiment and theory. Journal of Materials Research, 1990. 5(1): p. 151-160.
    84. Rha, J. J. and J. K. Park, Stability of the grain configurations of thin films - A model for agglomeration. Journal of Applied Physics, 1997. 82(4): p. 1608-1616.
    85. JCPDS Files Card no. 1-1258.
    86. Zangmeister, R. A., J. J. Park, G. W. Rubloff, and M. J. Tarlov, Electrochemical study of chitosan films deposited from solution at reducing potentials. Electrochimica Acta, 2006. 51(25): p. 5324-5333.
    87. Yang, S., X. Liu, X. Zeng, B. Xia, J. Gu, S. Luo, N. Mai, and W. Wei, Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sensors and Actuators, B: Chemical. 145(2): p. 762-768.
    88. Miao, Y. and S. N. Tan, Amperometric hydrogen peroxide biosensor with silica sol-gel/chitosan film as immobilization matrix. Analytica Chimica Acta, 2001. 437(1): p. 87-93.
    89. Kang, X., Z. Mai, X. Zou, P. Cai, and J. Mo, Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol-gel chitosan/silica hybrid. Talanta, 2008. 74(4): p. 879-886.
    90. Quan, D., Y. Kim, and W. Shin, Characterization of an amperometric laccase electrode covalently immobilized on platinum surface. Journal of Electroanalytical Chemistry, 2004. 561(SUPPL. 1): p. 181-189.
    91. Elmgren, Maja, Sten-Eric Lindquist, and Michael Sharp, Charge propagation through a redox polymer film containing enzymes--effects of enzyme loading, pH and supporting electrolyte. Journal of Electroanalytical Chemistry, 1993. 362(1-2): p. 227-235.
    92. Oungpipat, W., P. W. Alexander, and P. Southwell-Keely, A reagentless amperometric biosensor for hydrogen peroxide determination based on asparagus tissue and ferrocene mediation. Analytica Chimica Acta, 1995. 309(1-3): p. 35-45.
    93. Li, J., S. N. Tan, and J. T. Oh, Silica sol-gel immobilized amperometric enzyme electrode for peroxide determination in the organic phase. Journal of Electroanalytical Chemistry, 1998. 448(1): p. 69-77.
    94. Lineweaver, H. and D. Burk, The determination of enzyme dissociation constants. Journal of the American Chemical Society, 1934. 56(3): p. 658-666.
    95. Si, P., P. Kannan, L. Guo, H. Son, and D. H. Kim, Highly stable and sensitive glucose biosensor based on covalently assembled high density Au nanostructures. Biosensors and Bioelectronics. 26(9): p. 3845-3851.
    96. Wu, B. Y., S. H. Hou, F. Yin, J. Li, Z. X. Zhao, J. D. Huang, and Q. Chen, Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosensors and Bioelectronics, 2007. 22(6): p. 838-844.
    97. Ozoemena, K. I. and T. Nyokong, Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes. Electrochimica Acta, 2006. 51(13): p. 2669-2677.
    98. Sampath, S. and O. Lev, Inert metal-modified, composite ceramic-carbon, amperometric biosensors: Renewable, controlled reactive layer. Analytical Chemistry, 1996. 68(13): p. 2015-2021.
    99. Lee, S. H., H. Y. Fang, and W. C. Chen, Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate-chitosan oligomers mixture. Sensors and Actuators, B: Chemical, 2006. 117(1): p. 236-243.
    100. Zou, Y., C. Xiang, L. X. Sun, and F. Xu, Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosensors and Bioelectronics, 2008. 23(7): p. 1010-1016.
    101. Fu, G., X. Yue, and Z. Dai, Glucose biosensor based on covalent immobilization of enzyme in sol-gel composite film combined with Prussian blue/carbon nanotubes hybrid. Biosensors and Bioelectronics. 26(9): p. 3973-3976.
    102. Chen, X., J. Jia, and S. Dong, Organically modified sol-gel/chitosan composite based glucose biosensor. Electroanalysis, 2003. 15(7): p. 608-612.
    103. Liang, R. P., J. L. Jiang, and J. D. Qiu, Preparation of GOD/sol-gel silica film on Prussian blue modified electrode for glucose biosensor application. Electroanalysis, 2008. 20(24): p. 2642-2648.
    104. Zuo, S., Y. Teng, H. Yuan, and M. Lan, Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol-gel/polyvinyl alcohol hybrid film. Sensors and Actuators, B: Chemical, 2008. 133(2): p. 555-560.

    QR CODE