簡易檢索 / 詳目顯示

研究生: 邱柏諺
Po-Yen Chiu
論文名稱: 靜電作用力介導功能化殼聚醣自組裝用於選擇性癌症化療
Electrostatic Interaction-Mediated Self-Assembly of Functionalized Chitosan for Selective Cancer Chemotherapy
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 謝永堂
YEONG-TARNG SHIEH
朱哲毅
Che-Yi Chu
陳建光
Jem-Kun Chen
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 141/20/161
中文關鍵詞: 藥物傳遞系統天然高分子羅丹明 6g殼聚醣阿黴素
外文關鍵詞: drug delivery system, nature polymer, rhodamine 6g, chitosan, doxrubicin
相關次數: 點閱:304下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 II Abstract III 致謝 IV 圖目錄 XIII 表目錄 XX 縮減表 XXI 第一章 緒論 1 1.1 研究背景 1 1.2研究動機 2 第二章 文獻回顧 5 2.1藥物輸送系統 ( Drug delivery system, DDS ) 5 2.1.1 靶向治療 ( Targeted therapy ) 9 2.1.2 EPR效應 ( Enhanced Permeability and Retention Effect, EPR) 11 2.2 殼聚醣 ( Chitosan ) 12 2.2.1 殼聚醣之藥物輸送系統 15 2.3 Rhodamine 6g ( R6G ) 15 2.4 Doxorobicin ( Dox ) 16 2.5 靜電吸引力( Electrostatic Force ) 17 2.6 π-π 堆疊作用力 ( π-π Stacking Force ) 17 2.7 氫鍵 ( Hydrogen Bonding ) 18 2.8 質子化 ( Protonation ) 19 2.9 文獻回顧總結 19 第三章 實驗材料及方法 20 3.1 研究設計 20 3.2 實驗材料 21 3.2.1 實驗藥品 21 3.2.2 實驗溶劑 22 3.2.3 細胞實驗藥品 23 3.3 實驗儀器與設備參數 25 3.3.1 旋轉塗佈機 ( Spin Coaters ) 25 3.3.2 冷凍乾燥機 ( Freeze Dryer ) 25 3.3.3 振盪混合器 ( Vortex Mixer ) 25 3.3.4 斜式旋轉濃縮機 ( Rotary Evaporation ) 26 3.3.5 紫外線光譜儀 ( UV/Vis Spectrophotometer, UV/Vis ) 26 3.3.6 光致螢光光譜儀 ( Photoluminescence, PL ) 27 3.3.7 動態光散射儀 ( Dynamic Light Scattering, DLS ) 27 3.3.8 原子力顯微鏡 ( Atomic Force Microscpoic, AFM ) 28 3.3.9 螢光顯微鏡 ( Fluorescence Microscope ) 28 3.3.10 高解析度場發射掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM ) 29 3.3.11 差示掃描量熱儀 ( Differential Scanning Calorimetry, DSC ) 30 3.3.12 廣角X射線散射儀 ( Wide-angle X-ray scattering, WAXS ) 30 3.3.13 傅立葉轉換紅外線光譜 ( Fourier Transform Infraed Spectroscopy, FTIR ) 31 3.3.14 液態核磁共振光譜 ( Nuclear Magnetic Resonance Spectrometer, NMR ) 31 3.3.15 流式細胞分選儀 ( Flow Cytometers ) 32 3.3.16 CO2培養箱 ( CO2 Incubators ) 33 3.3.17 酵素免疫分選儀 ( ELISA Reader ) 33 3.3.18 桌上型酸鹼度計 ( pH Meter ) 34 3.4 實驗合成步驟 34 3.4.1 合成離子官能化殼聚醣( Sodium Functionalized Chitosan , CS-Na ) 34 3.5 樣品制備 35 3.5.1 Sodium Functionalized Chitosan取代度( Degree of Substitution , DS %)測定 35 3.5.2 可溶性天然高分子包載R6G/ DOX制備 36 3.5.3 臨界聚集濃度(Critical aggregation concentration,CAC)與臨界微胞濃度( Critical Micelle Concentration , CMC) 37 3.5.4 Rhodamine 6G及Doxorubicin藥物檢量線 37 3.5.5 Rhodamine 6G及Doxorubicin藥物包載能力 37 3.5.6 體外模擬藥物釋放 38 3.5.7 包載後之穩定性測試 38 3.6 細胞實驗制備 38 3.6.1 細胞解凍培養基 38 3.6.2 細胞培養基 39 3.6.3 細胞繼代 39 3.6.4 染色與數細胞 39 3.6.5細胞毒殺測試 39 3.6.6 溶血試驗制備 40 3.6.7 螢光顯微鏡制備 41 3.6.8 細胞攝取制備 41 3.6.9 製備1X Annexin-binding buffer 42 3.6.10流式細胞儀 42 第四章 結果與討論 44 4.1 化學鑑定分析 45 4.1.1 傅立葉轉換紅外線光譜 ( Fourier Transform Infraed Spectroscopy, FTIR ) 45 4.1.2 液態核磁共振光譜 ( Nuclear Magnetic Resonance Spectrometer, 1HNMR ) 46 4.1.2.1取代度測定 ( Degree of Substitution , DS % ) 47 4.1.3 液態核磁共振光譜 ( Nuclear Magnetic Resonance Spectrometer, 1HNMR ) 48 4.1.4 液態核磁共振光譜 ( Nuclear Magnetic Resonance Spectrometer, 13CNMR ) 53 4.2 熱性質分析 54 4.2.1 差示掃描量熱儀 ( Differential Scanning Calorimetry, DSC ) 54 4.3 藥物與載體間之配位關係 55 4.3.1 廣角X射線散射儀 ( Wide-angle X-ray scattering, WAXS ) 55 4.4 形貌測定 58 4.4.1 臨界聚集濃度(Critical aggregation concentration,CAC)與臨界微胞濃度( Critical Micelle Concentration , CMC) 58 4.4.2 動態光散射儀 ( Dynamic Light Scattering, DLS ) 58 4.4.2 原子力顯微鏡 ( Atomic Force Microscpoic, AFM ) / 高解析度場發射掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM ) 64 4.5 藥物包載率與釋放率 67 4.5.1 載體 ( CS-Na ) 酸鹼測試 67 4.5.1 藥物包載率 68 4.5.2 藥物釋放率 72 4.6 包載後之穩定性測試 75 4.7 溶血試驗 ( Hemolysis ) 78 4.8 生物細胞測試 81 4.8.1 細胞毒殺測試 ( MTT Assays ) 81 4.8.2 螢光顯微鏡 ( Confocal ) 89 4.8.3 細胞攝取 ( Cell uptake ) 95 4.8.4 細胞凋亡 ( Cell Apoptosis ) 99 4.9三成分Crd系統 104 4.9.1 DLS 104 4.9.2 藥物包載率 105 4.9.3 細胞毒殺測試 106 4.9.4 細胞攝取 109 4.9.5 細胞凋亡 112 第五章 結論 115 第六章 未來與展望 117 第七章 參考文獻 118

    1. P. A. Jones and S. B. Baylin, "The Epigenomics of Cancer," Cell, 2007 p. 683-692.
    2. R. A. Weinberg and R. A. Weinberg, The biology of cancer. WW Norton & Company, 2006.
    3. 衛生福利統計處, https://www.mohw.gov.tw/cp-5017-61533-1.html.2020 june.
    4. F. Lyon, "Latest global cancer data:
    Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020," 15 December 2020.
    5. B. A. Chabner and T. G. Roberts, "Chemotherapy and the war on cancer," Nature Reviews Cancer, 2005, pp. 65-72.
    6. S. S. Ahmad, M. A. Reinius, H. M. Hatcher, and T. V. Ajithkumar, "Anticancer chemotherapy in teenagers and young adults: managing long term side effects," Bmj, 2016,p354.
    7. K. Nooter and G. Stoter, "Molecular Mechanisms of Multidrug Resistance in Cancer Chemotherapy," Pathology - Research and Practice, 1996, p.768-780.
    8. J. D. Kingsley, H. Dou, J. Morehead, B. Rabinow, H. E. Gendelman, and C. J. Destache, "Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System," Journal of Neuroimmune Pharmacology,2006 pp. 340-350.
    9. D. Liu, F. Yang, F. Xiong, and N. Gu, "The smart drug delivery system and its clinical potential," Theranostics, 2016 p.1306.
    10. G. Manish and S. Vimukta, "Targeted drug delivery system: a review," Res J Chem Sci,2011p. 135-138.
    11. C.-C. Cheng et al., "Hydrogen-bonded supramolecular micelle-mediated drug delivery enhances the efficacy and safety of cancer chemotherapy," Polymer Chemistry, 2020 p. 2791-2798.
    12. C. Remuñán-López and R. Bodmeier, "Effect of formulation and process variables on the formation of chitosan-gelatin coacervates," International Journal of pharmaceutics, 1996, p. 63-72.
    13. S. Bhatia, "Natural polymers vs synthetic polymer," in Natural Polymer Drug Delivery Systems: Springer, 2016, p. 95-118.
    14. P.-A. Carrupt, N. El Tayar, A. Karlén, and B. Testa, "[31] Molecular electrostatic potentials for characterizing drug-biosystem interactions," Methods in enzymology, 1991, p. 638-677.
    15. R. Patel and J. Patel, "Novel technologies of oral controlled release drug delivery system," Systematic Reviews in Pharmacy,2010, p. 128.
    16. K. Park, "Controlled drug delivery systems: past forward and future back," Journal of Controlled Release, 2014, p. 3-8.
    17. V. Torchilin, "Tumor delivery of macromolecular drugs based on the EPR effect," Advanced drug delivery reviews, 2011, p. 131-135.
    18. D. Guimarães, A. Cavaco-Paulo, and E. Nogueira, "Design of liposomes as drug delivery system for therapeutic applications," International Journal of Pharmaceutics, 2021, p. 120571.
    19. A. Leung, C. Amador, L. Wang, U. Mody, and M. Bally, "What Drives Innovation: The Canadian Touch on Liposomal Therapeutics," Pharmaceutics,2019, p. 124.
    20. D. Huang and D. Wu, "Biodegradable dendrimers for drug delivery," Materials Science and Engineering: C, 2018pp. 713-727.
    21. H. B. Nair, B. Sung, V. R. Yadav, R. Kannappan, M. M. Chaturvedi, and B. B. Aggarwal, "Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer," Biochemical Pharmacology, 2010,p. 1833-1843.
    22. C. C. Cheng, M. C. Liang, Z. S. Liao, J. J. Huang, and D. J. Lee, "Self-Assembled Supramolecular Nanogels as a Safe and Effective Drug Delivery Vector for Cancer Therapy," Macromol. Biosci., 2017.
    23. I. Capek, "3 - Preparation of polymer-based nanomaterials," in Nanocomposite Structures and Dispersions (Second Edition), I. Capek Ed. Amsterdam: Elsevier, 2019, pp. 175-265.
    24. N. Muhamad, T. Plengsuriyakarn, and K. Na-bangchang, "Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review," International Journal of Nanomedicine, 2018, p. 3921-3935.
    25. J. K. Patel and A. P. Patel, "Passive targeting of nanoparticles to cancer," in Surface modification of nanoparticles for targeted drug delivery: Springer, 2019, p. 125-143.
    26. T. Sun, A. Dasgupta, Z. Zhao, M. Nurunnabi, and S. Mitragotri, "Physical triggering strategies for drug delivery," Advanced Drug Delivery Reviews, 2020, p. 36-62,
    27. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, "Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review," Journal of controlled release, 2000, pp. 271-284.
    28. C. R. C.R., science, vol. III, 1859,p.792-795.
    29. N. Morin-Crini, E. Lichtfouse, G. Torri, and G. Crini, "Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry," Environmental Chemistry Letters, 2019,p. 1667-1692.
    30. C. Zhang, Q. Ping, H. Zhang, and J. Shen, "Synthesis and characterization of water-soluble O-succinyl-chitosan," European Polymer Journal, 2003, p. 1629-1634.
    31. I. Younes and M. Rinaudo, "Chitin and chitosan preparation from marine sources. Structure, properties and applications," Marine drugs, 2015, p. 1133-1174.
    32. R. N. Tharanathan and F. S. Kittur, "Chitin—the undisputed biomolecule of great potential," 2003.
    33. Z. Shariatinia and A. Mohammadi-Denyani, "Advances in polymers for drug delivery and wound healing applications," Advances in polymers for biomedical applications, 2018,p. 85-141.
    34. Z. Shariatinia and A. M. Jalali, "Chitosan-based hydrogels: Preparation, properties and applications," International journal of biological macromolecules, vol. 115, pp. 194-220, 2018.
    35. E. A. El-hefian, M. M. Nasef, and A. H. Yahaya, "Chitosan physical forms: a short review," Australian Journal of Basic and Applied Sciences, 2011p. 670-677.
    36. M. Rinaudo, R. Auzely, C. Vallin, and I. Mullagaliev, "Specific interactions in modified chitosan systems," Biomacromolecules, 2005, p. 2396-2407.
    37. O. Ortona, G. D’Errico, G. Mangiapia, and D. Ciccarelli, "The aggregative behavior of hydrophobically modified chitosans with high substitution degree in aqueous solution," Carbohydrate polymers, 2008, p.16-22.
    38. J. Desbrieres, C. Martinez, and M. Rinaudo, "Hydrophobic derivatives of chitosan: Characterization and rheological behaviour," International journal of biological macromolecules, 1996,p. 21-28.
    39. S. Thanakkasaranee et al., "High substitution synthesis of carboxymethyl chitosan for properties improvement of carboxymethyl chitosan films depending on particle sizes," Molecules, 2021, p. 6013.
    40. S. Dimassi, N. Tabary, F. Chai, N. Blanchemain, and B. Martel, "Sulfonated and sulfated chitosan derivatives for biomedical applications: A review," Carbohydrate polymers, 2018, pp. 382-396.
    41. Y. A. Skorik, A. V. Pestov, M. I. Kodess, and Y. G. Yatluk, "Carboxyalkylation of chitosan in the gel state," Carbohydr Polym, 2012, p. 1176-81.
    42. Y. Chen and H.-m. Tan, "Crosslinked carboxymethylchitosan-g-poly (acrylic acid) copolymer as a novel superabsorbent polymer," Carbohydrate Research, 2006, p. 887-896.
    43. N. Mati-Baouche, P.-H. Elchinger, H. de Baynast, G. Pierre, C. Delattre, and P. Michaud, "Chitosan as an adhesive," European Polymer Journal, 2014, pp. 198-212.
    44. C. Laroche et al., "Bioactivity of chitosan and its derivatives," Current Organic Chemistry, 2018,p. 641-667.
    45. S. M. Joseph, S. Krishnamoorthy, R. Paranthaman, J. A. Moses, and C. Anandharamakrishnan, "A review on source-specific chemistry, functionality, and applications of chitin and chitosan," Carbohydrate Polymer Technologies and Applications, 2021, p. 100036.
    46. A. E. Sirica and R. J. Woodman, "Selective aggregation of u210 leukemia cells by the polycation chitosan," Journal of the National Cancer Institute, 1971, p. 377-388.
    47. H. Wang et al., "Folate-PEG coated cationic modified chitosan–cholesterol liposomes for tumor-targeted drug delivery," Biomaterials, 2010,p. 4129-4138.
    48. S. Sabnis, P. Rege, and L. H. Block, "Use of chitosan in compressed tablets of diclofenac sodium: Inhibition of drug release in an acidic environment," Pharmaceutical Development and Technology,1997, pp. 243-255.
    49. C. Yomota, T. Miyazaki, and S. Okada, "Sustained-release effect on the direct compressed tablet based on chitosan and Na alginate," Yakugaku Zasshi,1994, p. 257-263.
    50. S. Chen and Y. Wang, "Study on β-cyclodextrin grafting with chitosan and slow release of its inclusion complex with radioactive iodine," Journal of Applied Polymer Science, 2001,p. 2414-2421.
    51. C.-M. Lehr, J. A. Bouwstra, E. H. Schacht, and H. E. Junginger, "In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers," International Journal of Pharmaceutics, 1992, p. 43-48.
    52. J.-w. Ai, W. Liao, and Z.-L. Ren, "Enhanced anticancer effect of copper-loaded chitosan nanoparticles against osteosarcoma," RSC advances,2017,p.15971-15977.
    53. A. M. De Campos, A. Sánchez, and M. a. J. Alonso, "Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A," International journal of pharmaceutics, 2001,p. 159-168.
    54. P. Artursson, T. Lindmark, S. S. Davis, and L. Illum, "Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2)," Pharmaceutical research, 1994,p. 1358-1361.
    55. J. Akbuǧa and G. Durmaz, "Preparation and evaluation of cross-linked chitosan microspheres containing furosemide," International Journal of pharmaceutics, 1994,p. 217-222.
    56. F. L. Arbeloa, I. L. Gonzalez, P. R. Ojeda, and I. L. Arbeloa, "Aggregate formation of rhodamine 6G in aqueous solution," Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics,1982, p. 989-994.
    57. A. Penzkofer and W. Leupacher, "Fluorescence behaviour of highly concentrated rhodamine 6G solutions," Journal of luminescence, 1987p. 61-72.
    58. T. J. Lampidis et al., "Relevance of the chemical charge of rhodamine dyes to multiple drug resistance," Biochemical pharmacology, 1989, p. 4267-4271.
    59. R. Alford et al., "Toxicity of Organic Fluorophores Used in Molecular Imaging: Literature Review," Molecular Imaging, 2009, p. 7290.
    60. S. Thaler et al., "In vivo toxicity study of rhodamine 6G in the rat retina," Investigative ophthalmology & visual science, 2008, pp. 2120-2126.
    61. A. Pugazhendhi, T. N. J. I. Edison, B. K. Velmurugan, J. A. Jacob, and I. Karuppusamy, "Toxicity of Doxorubicin (Dox) to different experimental organ systems," Life sciences, 2018,p. 26-30.
    62. R. B. Weiss, "The anthracyclines: will we ever find a better doxorubicin?," in Seminars in oncology, 1992, p. 670-686.
    63. H. Nakatsuji, "Electrostatic force theory for a molecule and interacting molecules. I. Concept and illustrative applications," Journal of the American Chemical Society, 1973,p. 345-354.
    64. X. Z. Shu and K. J. Zhu, "Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure," International Journal of Pharmaceutics, 2002, p. 217-225.
    65. E. Mauri, G. M. F. Chincarini, R. Rigamonti, L. Magagnin, A. Sacchetti, and F. Rossi, "Modulation of electrostatic interactions to improve controlled drug delivery from nanogels," Materials Science and Engineering: C, 2017, p. 308-315.
    66. W.-R. Zhuang et al., "Applications of π-π stacking interactions in the design of drug-delivery systems," Journal of Controlled Release,2019, p. 311-326.
    67. K. Carter-Fenk and J. M. Herbert, "Reinterpreting π-stacking," Physical Chemistry Chemical Physics, 2020. 24870-24886.
    68. J.-H. Deng et al., "π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks," Science advances, 2020, p.9976.
    69. G. A. Jeffrey and W. Saenger, Hydrogen bonding in biological structures. Springer Science & Business Media, 2012.
    70. J. Emsley, "Very strong hydrogen bonding," Chemical Society Reviews, 1980,p. 91-124.
    71. S. J. Grabowski, Hydrogen bonding: new insights. Springer, 2006.
    72. E. I. Izgorodina and D. R. MacFarlane, "Nature of hydrogen bonding in charged hydrogen-bonded complexes and imidazolium-based ionic liquids," The Journal of Physical Chemistry B, 2011p. 14659-14667.
    73. S. C. Van der Lubbe and C. Fonseca Guerra, "The nature of hydrogen bonds: A delineation of the role of different energy components on hydrogen bond strengths and lengths," Chemistry–An Asian Journal, 2019,p. 2760-2769.
    74. G. Fraenkel and C. Franconi, "Protonation of Amides1," Journal of the American Chemical Society, 1960,p. 4478-4483.
    75. J. T. Mohr, A. Y. Hong, and B. M. Stoltz, "Enantioselective protonation," Nature chemistry, 2009, p. 359-369.
    76. S. J. Cho et al., "N-protonation vs O-protonation in strained amides: Ab initio study," The Journal of Organic Chemistry,1997, p. 4068-4071.
    77. A. L. Bukzem, R. Signini, D. M. dos Santos, L. M. Lião, and D. P. R. Ascheri, "Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function," International Journal of Biological Macromolecules, 2016, p. 615-624.
    78. K. Ananthapadmanabhan, E. Goddard, N. Turro, and P. Kuo, "Fluorescence probes for critical micelle concentration," Langmuir, 1985, p. 352-355.
    79. H. M. Aliabadi and A. Lavasanifar, "Polymeric micelles for drug delivery," Expert opinion on drug delivery, 2006, p. 139-162.
    80. R. A. Al-Harbi, M. A. S. El-Sharief, and S. Y. Abbas, "Synthesis and anticancer activity of bis-benzo [d][1, 3] dioxol-5-yl thiourea derivatives with molecular docking study," Bioorganic Chemistry,2019, p. 103088.
    81. B. Gheitarani, M. Golshan, M. S. Hosseini, and M. Salami-Kalajahi, "Reflectance and photophysical properties of rhodamine 6G/2-(4-methyl-2-oxo-2H-chromen-7-yloxy) acetic acid as cold hybrid colorant," Scientific Reports,2022, p. 6145.

    無法下載圖示 全文公開日期 2027/09/06 (校內網路)
    全文公開日期 2027/09/06 (校外網路)
    全文公開日期 2027/09/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE