簡易檢索 / 詳目顯示

研究生: 賴厚州
Hou-Chou Lai
論文名稱: 探討化學機械拋光於多晶氮化鋁平坦化之研究
Study on chemical mechanical polishing for planarization of polycrystalline aluminum nitride substrate
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 曾堯宣
Yao-Hsuan Tseng
郭養國
Yang-Kuao Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: 化學機械拋光氮化鋁基板拋光液特性材料移除率表面粗糙度
外文關鍵詞: chemical mechanical polishing, aluminum nitride substrate, slurry properties, material removal rate, surface roughness
相關次數: 點閱:394下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高功率電子元件的發展,因應效能的提升勢必產生更多熱能,為了避免高溫對元件的可靠度及運作帶來影響,多晶氮化鋁因具有高熱導率、高絕緣性及低成本,適合作為高功率電子元件的散熱基板。然而,多晶氮化鋁基板在透過高溫燒結後會產生粗糙的表面,導致在後續的磊晶製程衍生出良率上的問題。因此本研究將探討化學機械拋光(Chemical Mechanical Polishing,CMP)於改善多晶氮化鋁的表面粗糙度。首先針對AlN的材料及組成進行分析,分析後的AlN表面粗糙度來到Sa約為400 nm,代表了化學機械拋光所需的製程時間較長。由於拋光液對化學機械拋光的表面粗糙度帶來很大的影響,因此使用拋光液對氮化鋁基板進行浸泡實驗,並透過重量損失、表面粗糙度、微觀結構分析,以得出適合AlN的拋光液及稀釋比例。實驗結果使用1:1稀釋比例的ESA 220拋光液,因具有最快的化學反應及在貼近製程的30分鐘浸泡時間下不會產生腐蝕,因此成為後續化學機械拋光時選用的實驗參數。接著為了進一步得到更好的表面粗糙度,透過改變下壓力、轉速及時間來探討參數對表面粗糙度之影響。由實驗結果,AlN的平坦化過程主要是從AlN最高的晶粒開始進行移除,且可將化學機械拋光分成兩個階段,在第一階段使用大的下壓力及轉速(P=8.67 psi、V=90 rpm)會得到較低的表面粗糙度,表面粗糙度達Sa=44.48 nm;而在第二階段使用大的下壓力及低的轉速(P=8.67 psi、V=30 rpm)時,表面粗糙度可降至Sa=23.51 nm,並透過拉長時間確定了該實驗參數的再現性。


    With the development of high-power electronics, more heat energy is bound to be generated in response to the improvement of performance. In order to avoiding the influence of high temperature on the reliability and operation of components, polycrystalline aluminum nitride has high thermal conductivity, high insulation and low cost. It is suitable as a heat dissipation substrate for high-power electronic components. However, the polycrystalline aluminum nitride substrate will have a rough surface after being sintered at high temperature, which also result in yield problems in the subsequent epitaxial process. Therefore, this study will investigate the use of chemical mechanical polishing (CMP) to improve the surface roughness of polycrystalline aluminum nitride. Initially, the material and composition of AlN will be analyzed. The surface roughness of AlN is about Sa=400 nm, which means that the process time required for chemical mechanical polishing is relatively long. Then, since the slurry has a great influence on the surface roughness of chemical mechanical polishing, the aluminum nitride substrate was soaked in the slurry, and the weight loss, surface roughness, microstructure were analyzed to obtain the suitable AlN substrate of polishing solution and dilution ratio. The experimental results use ESA 220 polishing solution with a dilution ratio of 1:1, for it has the best chemical reaction rate and don`t cause corrosion under the 30-minute immersion time close to the process, so it becomes the experimental parameter for subsequent chemical mechanical polishing. Then, in order to further obtain better surface roughness, the influence of parameters on surface roughness was discussed by changing the down pressure, rotation speed and time. From the experimental results, the planarization process of AlN is mainly removed from the highest grains of AlN, and the chemical mechanical polishing can be divided into two stages. In First stage, by setting the parameter of P=8.67 psi and V=90 rpm will get lower surface roughness, for the surface roughness is Sa=44.48 nm. In second stage, by using high downforce and low rotational speed (P=8.67 psi, V=30 rpm), the surface roughness could be reduced to Sa = 23.51 nm, and the reproducibility of this experimental parameter was determined by elongation time.

    目錄 摘要 I Abstract V 目錄 VII 表目錄 XI 圖目錄 XII 第一章 前言 1 第二章 文獻回顧 2 2.1 氮化鋁基板於高功率元件之應用 2 2.1.1寬能隙半導體簡介 2 2.1.2 高功率元件產生之高溫度 4 2.1.3散熱基板於高功率元件之應用 6 2.1.4 氮化鋁特性及基板之製造 8 2.1.5 緩衝層與基板粗糙度對高功率元件之影響 10 2.2 化學機械拋光製程 12 2.2.1 半導體平坦化之方法 12 2.2.2 化學機械拋光製程介紹 13 2.2.3 化學機械拋光移除機制分類 14 2.2.4 化學機械拋光的接觸模式 15 2.2.5 物理移除機制 16 2.2.6 化學移除機制 18 2.2.7 介電質化學機械拋光機制 18 2.2.8 製程參數對化學機械拋光的影響 20 2.2.9 化學機械拋光移除率方程式 24 2.3文獻回顧總結 25 第三章 實驗方法 26 3.1 實驗流程 26 3.1.1 AlN基板之材料分析 26 3.1.2 AlN浸泡拋光液實驗 27 3.1.3 AlN化學機械拋光實驗 28 3.1.4 晶片清洗 29 3.1.5 拋光墊修整 30 3.1.6 拋光墊清洗 30 3.2 實驗設備 30 3.2.1 化學機械拋光機台 30 3.2.2 拋光墊 31 3.2.3 鑽石修整器 31 3.2.4 拋光液 32 3.2.5 陶瓷環 33 3.2.6拋光治具 34 3.3 分析儀器 34 3.3.1 表面干涉儀 34 3.3.2 X光繞涉儀 37 3.3.3 場發射掃描式電子顯微鏡 37 3.3.4 能量色散光譜 38 3.3.5 雷射繞射粒徑分析儀 38 3.3.6 精密天秤 39 第四章 結果與討論 40 4.1 AlN基板材料分析 40 4.1.1 AlN的微觀結構及表面粗糙度分析 40 4.1.2 AlN的晶體結構分析 41 4.1.3 AlN基板的化學組成分析 42 4.2 拋光液對AlN基板之作用 43 4.2.1 拋光液對AlN基板重量損失之分析 43 4.2.2 拋光液對AlN基板表面粗糙度之分析 45 4.2.3 拋光液對AlN基板微觀結構之分析 47 4.3 化學機械拋光實驗 50 4.3.1 轉速對化學機械拋光的影響 50 4.3.2 下壓力對化學機械拋光的影響 51 4.3.3 AlN的化學機械拋光平坦化 52 4.3.4 二階段化學機械拋光 54 4.3.5 二階段化學機械拋光參數對表面粗糙度之影響 56 4.3.6 探討AlN化學機械拋光在不同粗糙度時的材料移除率 63 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 65 參考文獻 67


    參考文獻
    [1]Iacopi, F., Van Hove, M., Charles, M., & Endo, K. "Power electronics with wide
    bandgap materials: Toward greener, more efficient technologies." Mrs Bulletin 40.5
    (2015): 390-395.
    [2]Ikeda, N., Niiyama, Y., Kambayashi, H., Sato, Y., Nomura, T., Kato, S., & Yoshida,S."GaN power transistors on Si substrates for switching applications." Proceedings of the IEEE 98.7 (2010): 1151-1161.
    [3]Reiner, R., Waltereit, P., Weiss, B., Moench, S., Wespel, M., Müller, S., ... & Ambacher, O. "Monolithically integrated power circuits in high-voltage GaN-on-Si heterojunction technology." IET Power Electronics 11.4 (2017): 681-688.
    [4]Magnani, A., Cosnier, T., Amirifar, N., Chatterjee, U., Zhao, M., Li, X., ... & Decoutere, S. "Thermal characterization of GaN lateral power HEMTs on Si, SOI, and poly-AlN substrates." Microelectronics Reliability 118 (2021): 114061.
    [5]Lee, R. R. "Development of high thermal conductivity aluminum nitride ceramic." Journal of the American Ceramic society 74.9 (1991): 2242-2249.
    [6]Parker, G. "Encyclopedia of materials: science and technology." (2001): 3703-3707.
    [7]Franco Júnior, A., & Shanafield, D. J. "Thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics." Ceramica 50 (2004): 247-253.
    [8]Reiner, R., Waltereit, P., Weiss, B., Moench, S., Wespel, M., Müller, S., ... & Ambacher, O. "Monolithically integrated power circuits in high-voltage GaN-on-Si heterojunction technology." IET Power Electronics 11.4 (2018): 681-688.
    [9]Zhao, Y. P., Wang, G. C., Lu, T. M., Palasantzas, G., & De Hosson, J. T. M. "Surface-roughness effect on capacitance and leakage current of an insulating film." Physical review B 60.12 (1999): 9157.
    [10]Artieda, A., Barbieri, M., Sandu, C. S., & Muralt, P."Effect of substrate roughness on c-oriented AlN thin films." Journal of applied physics 105.2 (2009): 024504.
    [11]Zhao, D., & Lu, X. "Chemical mechanical polishing: theory and experiment." Friction 1.4 (2013): 306-326.
    [12]Monroy, E., Omnès, F., & Calle, F. J. S. S. (2003). "Wide-bandgap semiconductor ultraviolet photodetectors." Semiconductor science and technology 18.4 (2003): R33.
    [13]Javorka, P. "Fabrication and characterization of AlGaN/GaN high electron mobility transistors." Bibliothek der RWTH Aachen (2004).
    [14]Millan, J., Godignon, P., Perpiñà, X., Pérez-Tomás, A., & Rebollo, J. "A survey of wide bandgap power semiconductor devices." IEEE transactions on Power Electronics 29.5 (2013): 2155-2163.
    [15]Donoval, D., Florovič, M., Gregušová, D., Kováč, J., & Kordoš, P. "High-temperature performance of AlGaN/GaN HFETs and MOSHFETs." Microelectronics Reliability 48.10 (2008): 1669-1672.
    [16]Anderson, T. J., Koehler, A. D., Tadjer, M. J., Hite, J. K., Nath, A., Mahadik, N. A., ... & Kub, F. J. "Electrothermal evaluation of thick GaN epitaxial layers and AlGaN/GaN high-electron-mobility transistors on large-area engineered substrates." Applied Physics Express 10.12 (2017): 126501.
    [17]Franco Júnior, A., & Shanafield, D. J. "Thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics." Ceramica 50 (2004): 247-253.
    [18]Virkar, A. V., Jackson, T. B., & Cutler, R. A. "Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride." Journal of the American ceramic society 72.11 (1989): 2031-2042.
    [19]Jones, E. A., Wang, F., & Ozpineci, B. "Application-based review of GaN HFETs." 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications. IEEE, 2014.
    [20]H. Xiao,Trans.,羅正忠,張鼎張,半導體製程技術討論 (Introduction to Semiconductor Manufacturing Technology),儒林圖書,2009
    [21]Zantye, P. B., Kumar, A., & Sikder, A. K. "Chemical mechanical planarization for microelectronics applications." Materials Science and Engineering: R: Reports 45.3-6 (2004): 89-220.
    [22]Aida, H. "Chemical and physical mechanisms of CMP of gallium nitride." Advances in Chemical Mechanical Planarization (CMP). Woodhead Publishing, 2016. 187-212.
    [23]Adachi, K., and I. M. Hutchings. "Wear-mode mapping for the micro-scale abrasion test." Wear 255.1-6 (2003): 23-29.
    [24]Luo, J., & Dornfeld, D. A. "Material removal mechanism in chemical mechanical polishing: theory and modeling." IEEE transactions on semiconductor manufacturing 14.2 (2001): 112-133.
    [25]Kwon, T. Y., Ramachandran, M., & Park, J. G. "Scratch formation and its mechanism in chemical mechanical planarization (CMP)." Friction 1.4 (2013): 279-305.
    [26]Shi, J., Chen, J., Wei, X., Fang, L., Sun, K., Sun, J., & Han, J. "Influence of normal load on the three-body abrasion behaviour of monocrystalline silicon with ellipsoidal particle." RSC advances 7.49 (2017): 30929-30940.
    [27]Brinksmeier, E., Riemer, O., & Gessenharter, A. "Finishing of structured surfaces by abrasive polishing." Precision Engineering 30.3 (2006): 325-336.
    [28]Ring, T. A., Feeney, P., Boldridge, D., Kasthurirangan, J., Li, S., & Dirksen, J. A. "Brittle and ductile fracture mechanics analysis of surface damage caused during CMP." Journal of The Electrochemical Society 154.3 (2007): H239.
    [29]Drouiche, N., Ghaffour, N., Lounici, H., & Mameri, M."Electrocoagulation of chemical mechanical polishing wastewater." Desalination 214.1-3 (2007): 31-37.
    [30]Lee, D., Lee, H., & Jeong, H. "Slurry components in metal chemical mechanical planarization (CMP) process: A review." International Journal of Precision Engineering and Manufacturing 17.12 (2016): 1751-1762.
    [31]Krishnan, M., Nalaskowski, J. W., & Cook, L. M. "Chemical mechanical planarization: slurry chemistry, materials, and mechanisms." Chemical reviews 110.1 (2010): 178-204.
    [32]Cook, L. M. "Chemical processes in glass polishing." Journal of non-crystalline solids 120.1-3 (1990): 152-171.
    [33]Hu, Y. Z., R. J. Gutmann, and T. P. Chow. "Silicon nitride chemical mechanical polishing mechanisms." Journal of the Electrochemical Society 145.11 (1998): 3919.
    [34]Zhang, Z., Yan, W., Zhang, L., Liu, W., & Song, Z. "Effect of mechanical process parameters on friction behavior and material removal during sapphire chemical mechanical polishing." Microelectronic Engineering 88.9 (2011): 3020-3023.
    [35]Moon, Y. "Chemical and physical mechanisms of dielectric chemical mechanical polishing (CMP)." Advances in Chemical Mechanical Planarization (CMP). Woodhead Publishing, 2016. 3-26.
    [36]Wang, Y. G., Zhang, L. C., & Biddut, A. "Chemical effect on the material removal rate in the CMP of silicon wafers." Wear 270.3-4 (2011): 312-316.
    [37]Mudhivarthi, S., Gitis, N., Kuiry, S., Vinogradov, M., & Kumar, A. "Effects of slurry flow rate and pad conditioning temperature on dishing, erosion, and metal loss during copper CMP." Journal of The Electrochemical Society 153.5 (2006): G372.
    [38]Luo, Q., S. Ramarajan, and S. V. Babu. "Modification of the Preston equation for the chemical–mechanical polishing of copper." Thin solid films 335.1-2 (1998): 160-167.
    [39]黃星豪, "藍寶石晶圓拋光加工之摩擦力與拋光墊機械性質分析研究",國立台灣科技大學機械工程系碩士論文, 2013
    [40]李怡萱, "微細發泡射出成形於拋光墊製造及化學機械平坦化應用研究",國立台灣科技大學機械工程系碩士論文, 2018
    [41]Sedlaček, M., Gregorčič, P., & Podgornik, B. "Use of the roughness parameters Ssk and Sku to control friction—A method for designing surface texturing." Tribology Transactions 60.2 (2017): 260-266.
    [42]Steigerwald, Joseph M., Shyam P. Murarka, and Ronald J. Gutmann. Chemical mechanical planarization of microelectronic materials. John Wiley & Sons, 1997.

    QR CODE