簡易檢索 / 詳目顯示

研究生: 宋瑜婷
Yu-Ting Sung
論文名稱: 基於力矩向量合成之全向式球形壓電馬達系統
Development of an Omnidirectional Spherical Piezoelectric Motor System based on Torque Vector Synthesis
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃育熙
Yu-Hsi Huang
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 166
中文關鍵詞: 球形壓電馬達電極配置全軸向力矩向量合成軸向控制
外文關鍵詞: Spherical piezoelectric motor, electrode configuration, omnidirectional orientation, torque vector synthesis, oriental control
相關次數: 點閱:177下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

相較於電磁式馬達,球形壓電馬達在設計上具有結構簡單、體積小等特點,實現多自由度驅動有其先天優勢,對於日益蓬勃發展的機器人科技來說是一大助力。然而目前球形壓電馬達的實際應用尚不普遍,其中一個主要原因為轉子旋轉軸向的控制方法並未有統一形式,大多與不同的系統設計而有所不同,既有的文獻中也較少針對軸向控制方法進行探討。為此本研究以力矩基本定義作為靈感並以全向輪(Mecanum wheel)的設計概念作為發想,提出由四個獨立壓電致動元件所組成的全新球形壓電馬達系統設計。在此系統中每一個壓電致動元件皆透過電極配置的方式切換兩種振動模態,可單獨驅動使轉子繞其對應軸旋轉作為基本軸向;接著利用力矩向量合成法便可產生多個不同的旋轉軸向。本文先闡述軸向控制的方法及原理,以單致動元件的驅動特性為基礎,再透過向量疊加的方式推導雙致動元件驅動下的多種合成軸向範圍,進而分析所設計球形壓電馬達系統如何達成全軸向旋轉之目標。實驗結果顯示旋轉軸向與理論推導完全一致,成功驗證所提之力矩向量合成軸向控制法可使輸出轉子以多個軸向進行旋轉。除此之外,本文亦利用向量合成的方式分析致動元件於不同驅動電壓下轉子輸出的轉速關係,藉此計算致動元件的驅動電壓參數並進行開迴路軸向控制實驗探討。


Comparing to the electromagnetic motors, the spherical piezoelectric motors have the advantages of simpler structure, more compact size, and easier implementation of multiple DOF motion in recent robot technologies. However, the use of spherical piezoelectric motors is still rarely seen in practical industrial applications and commercial products. The primary difficulty lies in the fact that the orientation manipulation of rotors is highly dependent on the design of various kinds of spherical motors and a unified version of orientation control method has not been reported yet. In light of this, the current study proposes a novel spherical piezoelectric motor system design using the idea of Mecanum wheel and torque vector synthesis. The proposed system is composed of four independent piezo actuating elements, in which two vibration modes can be implemented and switched to generate different rotor orientations in each actuating element through the technique of electrode configuration. These basic rotor orientations are then expanded to a great number of new orientations with the different combinations of piezo actuating elements and the technique of torque vector synthesis. The study first introduces the principle of orientation generation with a single piezo actuating element and then derives all the possible rotor orientations through the proper integration of torque vector synthesis and two piezo actuating elements. Based on the derived results, the goal of omnidirectional orientation can be achieved using our proposed system design. Experiments show that the orientation results are greatly consistent with the theoretical ones, demonstrating the effectiveness of the proposed omnidirectional orientation generation method. Furthermore, a preliminary study on open loop orientation control using the idea of vector synthesis is also conducted for future reference.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與文獻回顧 3 1.2.1 單定子球狀壓電馬達 3 1.2.2 多定子球狀壓電馬達 5 1.2.3 討論與分析 7 1.3 本文貢獻與架構 10 第二章 系統驅動原理分析 11 2.1 系統架構 11 2.2 致動模態設計 13 2.2.1 致動方向分析 13 2.2.2 模態致動原理分析 14 2.3 單致動元件驅動特性 16 2.3.1 側向模態 16 2.3.2 縱向模態 20 2.3.3 致動元件位置對應軸向 22 2.4 雙致動元件驅動特性 25 2.4.1 力矩合成原理 25 2.4.2 相對型驅動 27 2.4.3 相鄰型驅動 31 2.5 整體系統驅動特性 36 第三章 壓電致動元件設計與製作 39 3.1 壓電材料特性 39 3.1.1 壓電效應 39 3.1.2 壓電材料參數 40 3.1.3 壓電振動模式 43 3.2 電極配置與切割電極 45 3.2.1 基本原理 45 3.2.2 電極切割方法 47 3.3 有限元素分析 48 3.2.1 振動模態分析 48 3.2.2 電極配置分析 50 3.4 振動模態量測 53 3.4.1 固定端尺寸說明 53 3.4.2 阻抗分析 56 3.4.3 電子斑點干涉術 58 第四章 系統整合 65 4.1 系統機構設計 65 4.1.1 致動元件固定件設計 65 4.1.2 整體系統 66 4.2 系統驅動電路 67 4.2.1 電路架構 68 4.2.2 訊號電路 68 4.2.3 升壓電路 72 第五章 實驗結果與分析 76 5.1 實驗架設 76 5.1.1 系統架構 76 5.1.2 驅動特性量測架構 77 5.2 單致動元件驅動特性量測 77 5.2.1 轉子負載特性量測 78 5.2.2 驅動頻率與轉速分析 93 5.2.3 驅動電壓與轉速分析 96 5.3 雙致動元件驅動軸向變化實驗 98 5.3.1 實驗原理 98 5.3.2 實驗流程 99 5.3.3 相對型驅動 100 5.3.4 雙致動元件驅動軸向變化實驗(相鄰型) 109 5.3.5 實驗結論 126 5.4 軸向控制實驗 127 5.4.1 實驗原理 128 5.4.2 實驗流程 129 5.4.3 相對型軸向控制實驗 130 5.4.4 實驗結論 143 5.5 實驗結果誤差分析 144 第六章 結論與未來目標 146 6.1 結論 146 6.2 未來研究目標 147 參考文獻 149 附錄-有限元素分析壓電材料參數 153

[1]http://pmelectronics.ru/news/privoda-optsii-upravleniya-rasshiryayut-vozmozhnosti-robototehniki.html (電磁式馬達)
[2]http://www.pi-usa.us/products/Piezo_Motors_Stages/Linear-Motor-Precision-Positioning.php (壓電式線性馬達)
[3]Li, H., Luo, J., Huang, C., Huang, Q., & Xie, S. (2015). Design and control of 3-DoF spherical parallel mechanism robot eyes inspired by the binocular vestibule-ocular reflex. Journal of Intelligent & Robotic Systems, 78(3-4), 425-441.
[4]Zhang, X., Zhang, G., Nakamura, K., & Ueha, S. (2011). A robot finger joint driven by hybrid multi-DOF piezoelectric ultrasonic motor. Sensors and Actuators A: Physical, 169(1), 206-210.
[5]Toyama, Shigeki. "Spherical ultrasonic motor for pipe inspection robot." Applied Mechanics and Materials. Vol. 186. Trans Tech Publications, 2012.
[6]Huang, C., Gu, J., Luo, J., Li, H., Xie, S., & Liu, H. (2013, December). System design and study of bionic eye based on spherical ultrasonic motor using closed-loop control. In Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on (pp. 2685-2690). IEEE.
[7]http://www.vulture.com/2015/11/star-wars-crew-not-sure-if-bb-8-a-boy-or-a-girl.html (移動式機器人)
[8]http://carup2date.blogspot.com/2011/09/future-car-car-of-future-cars-of-future.html (未來概念車)
[9]Toyama, Shigeki, S. Hatae, and M. Nonaka. "Development of multi-degree of freedom spherical ultrasonic motor." Advanced Robotics, 1991.'Robots in Unstructured Environments', 91 ICAR., Fifth International Conference on. IEEE
[10]Toyama, Shigeki, and Shigeki Hatae. "Multi-degree of freedom spherical ultrasonic motor." RoManSy 9. Springer, Berlin, Heidelberg, 1993. 243-252.
[11]Spanner, K., & Koc, B. (2016, February). Piezoelectric motors, an overview. In Actuators (Vol. 5, No. 1, p. 6). Multidisciplinary Digital Publishing Institute.
[12]Dang, D. H., Friend, J., Oetomo, D., & Yeo, L. (2009). Triple degree-of-freedom piezoelectric ultrasonic micromotor via flexural-axial. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 56(8), 1716-1724.
[13]Yun, C. H., Yeo, L. Y., Friend, J. R., & Yan, B. (2012). Multi-degree-of-freedom ultrasonic micromotor for guidewire and catheter navigation: The NeuroGlide actuator. Applied Physics Letters, 100(16), 164101.
[14]Shi, S., Xiong, H., Liu, Y., Chen, W., & Liu, J. (2017). A ring-type multi-DOF ultrasonic motor with four feet driving consistently. Ultrasonics, 76, 234-244.
[15]Hagedorn, P., and J. Wallaschek. "Travelling wave ultrasonic motors, Part I: Working principle and mathematical modelling of the stator." Journal of Sound and Vibration 155.1 (1992): 31-46.
[16]Frangi, A., Corigliano, A., Binci, M., & Faure, P. (2005). Finite element modelling of a rotating piezoelectric ultrasonic motor. Ultrasonics, 43(9), 747-755.
[17]Ting, Y., Tsai, Y. R., Hou, B. K., Lin, S. C., & Lu, C. C. (2010). Stator design of a new type of spherical piezoelectric motor. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 57(10).
[18]Hoshina, M., Mashimo, T., Fukaya, N., Matsubara, O., & Toyama, S. (2013). Spherical ultrasonic motor drive system for camera orientation in pipe inspection. Advanced Robotics, 27(3), 199-209.
[19]Shen, S. C., & Huang, J. C. (2010). Design and fabrication of a high-power eyeball-like microactuator using a symmetric piezoelectric pusher element. Journal of microelectromechanical systems, 19(6), 1470-1476.
[20]Leroy, E., Lozada, J., & Hafez, M. (2014). A curved ultrasonic actuator optimized for spherical motors: design and experiments. Ultrasonics, 54(6), 1610-1619.
[21]Wang, F., Nishizawa, U., & Toyama, S. (2017). Micro spherical ultrasonic motor using single spiral wire stators. Vibroengineering PROCEDIA, 13, 121-126.
[22]Krushynska, A., Meleshko, V., Ma, C. C. and Huang, Y. H. (2011). Mode excitation efficiency for contour vibrations of piezoelectric resonators. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 58(10).
[23]Huang, Yu-Hsi. "Electromechanical coupling efficiency of transverse vibration in piezoelectric plates according to electrode configuration." Journal of the Chinese institute of engineers 36.7 (2013): 842-855.
[24]Shi, Y., Zhao, C., & Zhang, J. (2011). Contact analysis and modeling of standing wave linear ultrasonic motor. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(6), 1235-1242.
[25]Salih, J. E. M., Rizon, M., Yaacob, S., Adom, A. H., & Mamat, M. R. (2006). Designing omni-directional mobile robot with mecanum wheel. American Journal of Applied Sciences, 3(5), 1831-1835.
[26]周卓明編著,壓電力學,全華科技圖書股份有限公司,台北,2013
[27]APC International, Ltd. Piezoelectric ceramics: principles and applications. APC International, 2002.
[28]http://www.eleceram.com.tw/en/product-258834/PIEZOELECTRIC-CERAMICS-Plate.htmlLin (寰辰科技有限公司)
[29]黃俊成,對稱型壓電元件於多軸度微型致動器之研製,碩士論文,國立成功大學,台南,2009。
[30]Chi-Ying, Yu-Hsi Huang, and Wei-Ting Chen. "Multimodal suppression of vibration in smart flexible beam using piezoelectric electrode-based switching control." Mechatronics53 (2018): 152-167.
[31]http://www.waynekerrtest.com.tw/front/bin/download.phtml?Part=Support01&Nbr=350&Category=0 (阻抗分析)
[32]http://www.me.nchu.edu.tw/lab/holo/www/Lab_introduction/espi.htm (電子斑點干涉術)
[33]黃育熙,壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算與理論分析,博士論文,國立台灣大學,台北,2009。
[34]https://store.arduino.cc/usa/arduino-uno-rev3 (Arduino Uno)
[35]Murphy, Eva, and Colm Slattery. "Ask the application engineer—33 all about direct digital synthesis." Analog Dialogue 38.3 (2004): 8-12.
[36]http://www.analog.com/media/en/technical-documentation/data-sheets/AD9832.pdf (AD9832 data sheet)
[37]http://www.ti.com/lit/ds/symlink/lf356.pdf (LF356N data sheet)
[38]https://www.piezodrive.com/wp-content/uploads/2016/01/MX200.pdf (Piezo Drive Mx200 data sheet)
[39]https://www.learnmode.net/upload/flip/book/67/676452d94e64acbf/5f187b6fd7d5.pdf (兩直線之夾角關係式)
[40]王行達,田麗文,李佳榮編譯,物理(上),全華圖書股份有限公司,台北,2008
[41]陳長城編著,向量演算學及其應用,滄海書局,台中市,2018

無法下載圖示 全文公開日期 2023/08/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE