簡易檢索 / 詳目顯示

研究生: 塗孮廷
Tsung-Ting Tu
論文名稱: 採用滑模觀測法之無速度感測器感應電動機驅動電路研製
Design and Implementation of a Sensorless Induction Motor Drive with Sliding Mode Observer
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
謝耀慶
Yao-Ching Hsieh
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 109
中文關鍵詞: 感應電動機間接式磁場導向控制無感測器控制滑模觀測器
外文關鍵詞: induction motor, indirect rotor field oriented control, sensorless control, sliding mode observer
相關次數: 點閱:322下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以研製無速度感測器之三相感應電動機驅動電路為主要目標,利用數位訊號處理器作為控制核心。控制架構採用間接式轉子磁場導向控制並配合滑模觀測器作為回授轉速觀測,以實現轉速與電流之閉迴路控制。因此在本文中將著重無感測器系統設計,以換流器輸出的電流回授計算出磁通,再經由磁通計算出轉子旋轉速度。並透過滑差轉速的計算與補償後,得出觀測的電動機同步轉速與同步旋轉角度,完成無感測器之閉迴路速度控制。文中所提出的方法,經由模擬軟體建立完整的三相感應電動機模型並確定其可行性後,再以硬體電路進行實際測試,來驗證控制法之可行性,藉以確立無速度感測器之三相感應電動機驅動電路於實際應用之價值。


    In this thesis, developing a sensorless three-phase induction motor drive circuit is main purpose. The digital signal processor (DSP) is chosen as the control core. Indirect Rotor Field Oriented Control (IRFOC) and Sliding Mode Observer (SMO) is adopted as the control architecture, and the feedback speed is observed by SMO to achieve closed-loop control of speed and current. Therefore, this thesis will focus on the design of a sensorless system. The design method is that the flux is calculated by the feedback current of the inverter, and then the rotor speed is calculated through the flux and compensated by the slip speed. Finally, The closed-loop sensorless control is completed when the observed synchronous speed and synchronous rotation angle of motor is gotten. The method proposed in the thesis, it is established a three-phase induction motor model through simulation software and determines its feasibility. Then, the hardware circuits is investigated and verified experimentally to verify the feasibility of this method, thereby establishing the value of sensorless three phase induction motor drive in practical application.

    摘要 Abstract 致謝 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文大綱 第二章 三相感應電動機介紹 2.1 三相感應電動機模型 2.2 座標軸轉換 2.2.1 克拉克轉換 2.2.2 派克轉換 2.3 磁通鏈方程式 2.4 同步旋轉座標軸等效模型 第三章 三相感應電動機控制原理 3.1 純量控制 3.2 向量控制 3.2.1 直接式與間接式磁場導向控制 3.2.2 間接式轉子磁場導向控制 3.3 換流器調變策略 3.3.1 正弦脈波寬度調變 3.3.2 空間向量脈波寬度調變 第四章 無感測器控制原理 4.1 速度感測器控制 4.2 無速度感測器控制 4.2.1 模型參考適應系統 4.2.2 增廣型卡爾曼濾波器 4.2.3 滑模觀測器 4.3 滑模觀測器原理 4.3.1 電流觀測器 4.3.2 李亞普諾夫穩定性分析 4.3.3 磁通與速度觀測器 第五章 系統研製 5.1 三相換流器設計 5.1.1 電路規格 5.1.2 電路架構 5.1.3 功率元件選擇 5.2 數位控制設計 5.2.1 數位訊號處理器簡介 5.2.2 控制器規劃與設計 第六章 實測結果與分析 6.1 模擬軟體PSIM模擬結果 6.2 模擬軟體PLECS RT BOX模擬結果 6.3 實測結果 第七章 結論與未來展望 7.1 結論 7.2 未來展望 參考文獻

    [1] F. D. Petruzella, “Electric Motors and Control Systems,” McGraw-Hill Education press, 2009.
    [2] R. F. Yang, W. Chen, Y. Y. Yu and D. G. Xu, “A novel V/F control system based on stator voltage oriented method,” 2008 International Conference on Electrical Machines and Systems, 2008, pp. 83-87.
    [3] H. N. Kwang, “AC Motor Control and Electric Vehicle Application,” CRC press, 2010.
    [4] H. Grotstollen and A. Bunte, “Control of induction motor with orientation on rotor flux or on stator flux in a very wide field weakening region-experimental results,” Proceedings of IEEE International Symposium on Industrial Electronics, 1996, pp. 911-916.
    [5] R. W. de Doncker and D. W. Novotny, “The universal field oriented controller,” Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting, 1988, pp. 450-456.
    [6] Y. S. Lai, J. H. Chen, C. H. Liu, “A universal vector controller for induction motor drives fed by voltage-controlled voltage source inverter,” 2000 Power Engineering Society Summer Meeting, 2000, pp. 2493-2498.
    [7] E. Quintero-Manríquez, E. N. Sanchez and R. A. Félix, “Real-Time Direct Field-Oriented Control of induction motor for electric vehicles applications, ” 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2014, pp. 1-6.
    [8] D. Casadei, F. Profumo, G. Serra and A. Tani, “FOC and DTC: two viable schemes for induction motors torque control,” in IEEE Transactions on Power Electronics, vol. 17, no. 5, pp. 779-787, Sept. 2002.
    [9] A. Consoli, G. Scarcella and A. Testa, “A new zero-frequency flux-position detection approach for direct-field-oriented-control drives,” in IEEE Transactions on Industry Applications, vol. 36, no. 3, pp. 797-804, May-June 2000.
    [10] G. Espinosa-Perez and R. Ortega, “Tuning of PI gains for FOC of induction motors with guaranteed stability,” Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation, 1997, pp. 569-574.
    [11] P. Vas, “Sensorless and Direct Torque Control,” Oxford University Press, 1998.
    [12] I. Takahashi and Y. Ohmori, “High-performance direct torque control of an induction motor,” in IEEE Transactions on Industry Applications, vol. 25, no. 2, pp. 257-264, March-April 1989.
    [13] J. Maes and J. A. Melkebeek, “Speed-sensorless direct torque control of induction motors using an adaptive flux observer,” in IEEE Transactions on Industry Applications, vol. 36, no. 3, pp. 778-785, May-June 2000.
    [14] C. Lascu, I. Boldea and F. Blaabjerg, “Direct torque control of sensorless induction motor drives: a sliding-mode approach,” in IEEE Transactions on Industry Applications, vol. 40, no. 2, pp. 582-590, March-April 2004.
    [15] L. Zhang, C. Wathanasarn and F. Hardan, “An efficient microprocessor-based pulse-width modulator using space vector modulation strategy,” Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics, 1994, pp. 91-96.
    [16] A. J. Pollmann, “Software Pulsewidth Modulation for μP Control of AC Drives,” in IEEE Transactions on Industry Applications, vol. IA-22, no. 4, pp. 691-696, July 1986.
    [17] Y. Y. Jia, X. D. Wang, L. L. Mao, S. C. Yang and H. X. Zhang, “Application and Simulation of SVPWM in three phase inverter,” Proceedings of 2011 6th International Forum on Strategic Technology, 2011, pp. 541-544.
    [18] A. M. Trzynadlowski, “Control of Induction Motors (Engineering),” Academic Press, 2000.
    [19] S. K. Sul, “Control of Electric Machine Drive Systems,” Wiley-IEEE Press, 2011.
    [20] F. Giri “AC Electric Motors Control: Advanced Design Techniques and Applications,” Wiley Press, 2013.
    [21] A. Derdiyok, H. Rehman, M. K. Guven, N. Inanc and Longya Xu, “A robust sliding mode observer for speed estimation of induction machine,” APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2001, pp. 413-418.
    [22] H. Rehman, A. Derdiyok, M. K. Guven and Longya Xu, “A new current model flux observer for wide speed range sensorless control of an induction machine,” in IEEE Transactions on Power Electronics, vol. 17, no. 6, pp. 1041-1048, Nov. 2002.
    [23] H. C. Chen, C. I. Wu, C. W. Chang, Y. Hwa and H. W. Lin, “Integral sliding-mode flux observer for sensorless vector-controlled induction motors,” 2010 International Conference on System Science and Engineering, 2010, pp. 298-303.
    [24] J. Li, A. Thapa and K. A. Corzine, “Speed-sensorless drive for induction machines using a novel hybrid observer,” 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 512-517.
    [25] J. Hu and B. Wu, “New integration algorithms for estimating motor flux over a wide speed range,” in IEEE Transactions on Power Electronics, vol. 13, no. 5, pp. 969-977, Sept. 1998.
    [26] T. Orlowska-Kowalska and M. Dybkowski, “Stator-Current-Based MRAS Estimator for a Wide Range Speed-Sensorless Induction-Motor Drive,” in IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1296-1308, April 2010.
    [27] A. Dell'Aquila, F. Cupertino, L. Salvatore and S. Stasi, “Kalman filter estimators applied to robust control of induction motor drives,” IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, 1998, pp. 2257-2262.

    無法下載圖示 全文公開日期 2026/07/30 (校內網路)
    全文公開日期 2026/07/30 (校外網路)
    全文公開日期 2026/07/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE