簡易檢索 / 詳目顯示

研究生: Widagdo Purbowaskito
Widagdo Purbowaskito
論文名稱: 用於感應馬達預知保養之資料驅使模型式異常診斷
Data-driven Model-based Fault Diagnosis for the Predictive Maintenance of Induction Motors
指導教授: 藍振洋
Chen-yang Lan
口試委員: 黃安橋
An-Chyau Huang
林紀穎
Chi-Ying Lin
劉孟昆
Meng-Kun Liu
林峻永
Chun-Yeon Lin
陳韋任
Wei-Jen Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 132
外文關鍵詞: fault frequency, model-based diagnosis, state-space realization, subspace identification
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Three-phase induction motors (IMs) play a significant role as actuators in many industrial processes and facilities because they efficiently convert electrical energy into mechanical energy.
    Because they also have rugged and robust constructions, they can be operated and installed, ranging from general to highly pressured and hazardous locations.
    Nevertheless, despite the advantage in their construction, the IMs are still subject to faults and failures due to their heavy-duty operation conditions, industrial environmental stresses, and aging.
    Faults and failures in IM operation may lead to severe safety issues, costly downtime and maintenance, and energy wasting.
    Thus, maintaining the IM condition appropriate becomes vital to keep it running safely and efficiently.
    The fault diagnosis technology serves the primary role in predictive maintenance as it becomes the first method used to understand the condition of the IM during its operation.

    Signal-based fault diagnosis, such as motor current signature analysis (MCSA), provides low cost and low requirements for its implementation.
    The fact that it utilizes the simple fast Fourier-transform (FFT) algorithm makes it promising for practical implementation.
    Different fault frequency indicators can be observed once the FFT algorithm is applied to the current signals.
    These fault frequencies have been standardized in the ISO-20958 document.
    However, locating these fault frequencies in the current spectrum is challenging because of their low amplitude/low energy.
    Often, the energy of the current harmonics dominates their presence, and the spectral leakage during the current data acquisition (DAQ) process conceals them.
    MCSA fault diagnosis faces these challenges in its practical implementation.

    This study aims to address the challenges mentioned above by introducing the model-based diagnosis to substitute for the MCSA.
    The model-based diagnosis mitigates the current harmonics and other fault-unrelated frequencies from the spectrum using the sinusoidal waveform superposition principle.
    The model-based approach utilizes measured voltage signals and an IM state-space model to generate the estimated current signals.
    The estimated current and the original current signals have the same frequency components coming from the voltage signals, except the original current has other frequency components, which are the fault frequencies.
    The fault frequencies are occurred due to faults and do not come from the voltage signals.
    The destructive sinusoidal waveform superposition happens when the current estimate subtracts the original current.
    It eliminates all the same frequency components and leaves the fault frequencies in the spectrum.
    Because the domination from current harmonics and fault-unrelated frequencies has been mitigated, tracking the fault frequencies becomes effortless.
    The output of mentioned subtraction process is called the residual signal.
    Therefore, it can be hypothetically stated that the residual signals are fault-sensitive compared to the original current signals.
    The residual signals are valuable data to train a machine learning classifier for fault diagnosis.
    The fault frequencies are extracted from the residual spectrum to generate certain features for machine learning classifier training.
    The fault frequencies have the physical meaning corresponding to the faults.
    Thus, it allows them to provide valuable information for the classifier to learn during the training process.

    The proposed method is validated in an actual wastewater centrifugal pump driven by an IM in an industrial facility.
    It is to verify the proposed method's performance in actual operational conditions.
    The experiments for both single- and multiple-fault faults are conducted assuming that the IM operational condition is quasi-steady-state.
    The experimental validation results show that the practical implementation of model-based diagnosis demonstrates better sensitivity and performance than MCSA.
    The combination of model-based diagnosis and machine learning classifier demonstrates better accuracy in fault diagnosis decisions.

    Recommendation Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Qualification Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi Nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Dissertation Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Dissertation related Publications . . . . . . . . . . . . . . . . . . . . 9 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Motor Current Signature Analysis . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Misalignment/Unbalance . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Bearing Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.3 Broken Rotor Bar . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Enhancement of Low Amplitude Fault Frequency Signature . . . . . 16 2.3 Model-based Diagnosis and Induction Motor Model Identification . . 18 2.4 Feature Extraction Methods in Fault Diagnosis based on Machine Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Research Gap Analysis on the Proposed Approach . . . . . . . . . . . 23 3 Data-Driven Modeling of Induction Motors . . . . . . . . . . . . . . . . . . 26 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Coordinate Transformation . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Induction Motor Dynamic Model . . . . . . . . . . . . . . . . . . . . 27 3.4 Black-box State-Space Realization . . . . . . . . . . . . . . . . . . . . 29 3.5 Subspace Identification Algorithm . . . . . . . . . . . . . . . . . . . . 30 3.5.1 State-Space Model . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.2 Data Representation . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.3 State Sequences and Extended Observability Matrix . . . . . 32 3.5.4 System Matrices Estimation . . . . . . . . . . . . . . . . . . . 34 3.5.5 Stochastic Quantities Estimation . . . . . . . . . . . . . . . . 35 3.5.6 Initial States Estimation . . . . . . . . . . . . . . . . . . . . . 35 3.5.7 Persistently Exciting Input Signals . . . . . . . . . . . . . . . 36 3.6 V/I Signals Pair Correction . . . . . . . . . . . . . . . . . . . . . . . 37 3.7 Current Signals Estimation . . . . . . . . . . . . . . . . . . . . . . . 39 3.8 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.9 Model Identification Results . . . . . . . . . . . . . . . . . . . . . . . 42 3.9.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.9.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Model-based Diagnosis Framework . . . . . . . . . . . . . . . . . . . . . . 49 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 SID-based Residual Generator . . . . . . . . . . . . . . . . . . . . . . 52 4.4 Signal Processing and Frequency Analysis . . . . . . . . . . . . . . . 54 4.4.1 Fast-Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 54 4.4.2 Fault-related Frequency . . . . . . . . . . . . . . . . . . . . . 56 4.4.3 Rotational Frequency and Slip Estimations . . . . . . . . . . 57 4.4.4 Local-band Search . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4.5 Rotational Frequency Tracking in Current Spectrum . . . . . 59 4.4.6 Picket Fence Effect . . . . . . . . . . . . . . . . . . . . . . . . 60 4.5 Fault Diagnosis Framework . . . . . . . . . . . . . . . . . . . . . . . 61 4.5.1 Statistical Residual Threshold . . . . . . . . . . . . . . . . . . 61 4.5.2 Residual Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . 62 4.6 Fault Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.7 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.7.1 Single-Fault Diagnosis: Broken Rotor Bar . . . . . . . . . . . 67 4.7.2 Single-Fault Diagnosis: Bearing Fault . . . . . . . . . . . . . . 71 4.7.3 Multiple-Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . 74 4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5 Integrated Model-based and Machine Learning Diagnosis Framework . . . 80 5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Signal-based v.s. Model-based . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Residual Sensitivity to Faults . . . . . . . . . . . . . . . . . . . . . . 83 5.4 Fault Isolability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.5 Integrated Diagnosis Framework . . . . . . . . . . . . . . . . . . . . . 87 5.6 Machine Learning Classifiers . . . . . . . . . . . . . . . . . . . . . . . 88 5.6.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . 89 5.6.2 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . 90 5.7 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.7.1 Experimented Faults . . . . . . . . . . . . . . . . . . . . . . . 92 5.7.2 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . 93 5.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.8.1 Feature Distributions . . . . . . . . . . . . . . . . . . . . . . . 94 5.8.2 Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 A.1 Three-phase Voltage Equations . . . . . . . . . . . . . . . . . . . . . 116 A.2 Arbitrary αβ0 Reference Frame . . . . . . . . . . . . . . . . . . . . . 118 A.2.1 Voltage Equations in Arbitrary Frame . . . . . . . . . . . . . 119 A.2.2 Flux Linkage in Arbitrary Frame . . . . . . . . . . . . . . . . 120 A.2.3 Rotor Torque in Arbitrary Frame . . . . . . . . . . . . . . . . 121 A.3 Induction Motor Model in Stationary Frame . . . . . . . . . . . . . . 123 APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 B.1 Hankel Matrix and QR Decomposition . . . . . . . . . . . . . . . . . 124 B.2 I/O Data Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 B.3 Projection of Zi Calculation . . . . . . . . . . . . . . . . . . . . . . . 125 B.4 Projection of Zi+1 Calculation . . . . . . . . . . . . . . . . . . . . . . 126 B.5 Oblique Projection of Oi Calculation . . . . . . . . . . . . . . . . . . 126 B.6 State-Space Matrices Calculation . . . . . . . . . . . . . . . . . . . . 127 APPENDIX C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 C.1 Magnelab MGC-1000-050 . . . . . . . . . . . . . . . . . . . . . . . . 129 APPENDIX D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 D.1 Single Fault Diagnosis: Broken Rotor Bar . . . . . . . . . . . . . . . 130 D.2 Single Fault Diagnosis: Bearing Fault . . . . . . . . . . . . . . . . . . 131 D.3 Multiple Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . 132

    [1] P. Waide and C. U. Brunner, “Energy-effciency policy opportunities for electric motor-driven systems,” IEA Energy Papers, 2011.
    [2] S. Lacey, “The role of vibration monitoring in predictive maintenance part 1: Principles and practice,” Maintenance & Asset Management, vol. 25, no. 1, pp. 42–51, 2011.
    [3] M. C. Garcia, M. A. Sanz-Bobi, and J. del Pico, “SIMAP: Intelligent system for predictive maintenance,” Computers in Industry, vol. 57, pp. 552–568, Aug. 2006.
    [4] M. Pineda-Sanchez, R. Puche-Panadero, M. Riera-Guasp, J. Perez-Cruz, J. Roger-Folch, J. Pons-Llinares, V. Climente-Alarcon, and J. A. Antonino-Daviu, “Application of the teager–kaiser energy operator to the fault diagnosis of induction motors,” IEEE Transactions on Energy Conversion, vol. 28, pp. 1036–1044, Dec. 2013.
    [5] N. Saad, M. Irfan, and R. Ibrahim, Condition Monitoring and Faults Diagnosis of Induction Motors. CRC Press, July 2018.
    [6] N. S. Clements, “Introduction to prognostics.” https://phmsociety.org/wp-content/uploads/2010/11/Tutorial-Prognostics-Clements.pdf, 2010. Accessed: 2022-06-20.
    [7] J. Kim, S. Shin, S. B. Lee, K. N. Gyftakis, M. Drif, and A. J. M. Cardoso, “Power spectrumbased detection of induction motor rotor faults for immunity to false alarms,” IEEE Transactions on Energy Conversion, vol. 30, pp. 1123–1132, Sept. 2015.
    [8] M. Benbouzid, H. Nejjari, R. Beguenane, and M. Vieira, “Induction motor asymmetrical faults detection using advanced signal processing techniques,” IEEE Transactions on Energy Conversion, vol. 14, pp. 147–152, June 1999.
    [9] J. Antonino-Daviu, M. Riera-Guasp, J. Pons-Llinares, J. Park, S. B. Lee, J. Yoo, and C. Kral,“Detection of broken outer-cage bars for double-cage induction motors under the startup transient,” IEEE Transactions on Industry Applications, vol. 48, pp. 1539–1548, Sept. 2012.
    [10] S. Cruz, A. Stefani, F. Filippetti, and A. Cardoso, “A new model-based technique for the diagnosis of rotor faults in RFOC induction motor drives,” IEEE Transactions on Industrial Electronics, vol. 55, pp. 4218–4228, Dec. 2008.
    [11] B. Gou, Y. Xu, Y. Xia, G. Wilson, and S. Liu, “An intelligent time-adaptive data-driven method for sensor fault diagnosis in induction motor drive system,” IEEE Transactions on Industrial Electronics, vol. 66, pp. 9817–9827, Dec. 2019.
    [12] W. T. Thomson and I. Culbert, Current signature analysis for condition monitoring of cage induction motors: Industrial application and case histories. John Wiley & Sons, 2017.
    [13] G. Sullivan, R. Pugh, A. P. Melendez, and W. D. Hunt, “Operations & maintenance best practices - a guide to achieving operational effciency (release 3),” tech. rep., Pacific Northwest National Lab. (PNNL), Richland, WA (United States), Aug. 2010.
    [14] W. Purbowaskito, C.-Y. Lan, M.-K. Liu, and K. Fuh, “A novel scheme on fault diagnosis of induction motors using current per voltage bode diagram,” Journal of the Chinese Society of Mechanical Engineers, vol. 41, no. 6, pp. 781–790, 2020.
    [15] R. de Jesus Romero-Troncoso, “Multirate signal processing to improve FFT-based analysis for detecting faults in induction motors,” IEEE Transactions on Industrial Informatics, vol. 13, pp. 1291–1300, June 2017.
    [16] H. Chen, S. Ye, T. Wang, X. Zheng, and T. Li, “Extraction of common-mode impedance of an induction motor by using all-phase FFT with intermediate-frequency filtering,” IEEE Transactions on Electromagnetic Compatibility, vol. 63, pp. 1593–1598, Oct. 2021.
    [17] C. Caironi, D. Brie, L. Durantay, and A. Rezzoug, “Interest and utility of time frequency and time scale transforms in the partial discharges analysis,” in Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No.02CH37316), IEEE, 2002.
    [18] E. Cabal-Yepez, A. G. Garcia-Ramirez, R. J. Romero-Troncoso, A. Garcia-Perez, and R. A. Osornio-Rios, “Reconfigurable monitoring system for time-frequency analysis on industrial equipment through STFT and DWT,” IEEE Transactions on Industrial Informatics, vol. 9, pp. 760–771, May 2013.
    [19] O. Mohammed, N. Abed, and S. Ganu, “Modeling and characterization of induction motor internal faults using finite-element and discrete wavelet transforms,” IEEE Transactions on Magnetics, vol. 42, pp. 3434–3436, Oct. 2006.
    [20] M. Z. Ali and X. Liang, “Threshold-based induction motors single- and multifaults diagnosis using discrete wavelet transform and measured stator current signal,” Canadian Journal of Electrical and Computer Engineering, vol. 43, no. 3, pp. 136–145, 2020.
    [21] E. T. Esfahani, S. Wang, and V. Sundararajan, “Multisensor wireless system for eccentricity and bearing fault detection in induction motors,” IEEE/ASME Transactions on Mechatronics, vol. 19, pp. 818–826, June 2014.
    [22] X. Song, J. Hu, H. Zhu, and J. Zhang, “A bearing outer raceway fault detection method in induction motors based on instantaneous frequency of the stator current,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 13, pp. 510–516, Jan. 2018.
    [23] V. Climente-Alarcon, J. A. Antonino-Daviu, A. Haavisto, and A. Arkkio, “Diagnosis of induction motors under varying speed operation by principal slot harmonic tracking,” IEEE Transactions on Industry Applications, vol. 51, pp. 3591–3599, Sept. 2015.
    [24] S. Shin, J. Kim, S. B. Lee, C. Lim, and E. J. Wiedenbrug, “Evaluation of the influence of rotor magnetic anisotropy on condition monitoring of two-pole induction motors,” IEEE Transactions on Industry Applications, vol. 51, pp. 2896–2904, July 2015.
    [25] G. Joksimovic and J. Penman, “The detection of inter-turn short circuits in the stator windings of operating motors,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1078–1084, 2000.
    [26] Q. Wu and S. Nandi, “Fast single-turn sensitive stator interturn fault detection of induction machines based on positive- and negative-sequence third harmonic components of line currents,” IEEE Transactions on Industry Applications, vol. 46, no. 3, pp. 974–983, 2010.
    [27] W. Thomson and M. Fenger, “Current signature analysis to detect induction motor faults,”IEEE Industry Applications Magazine, vol. 7, no. 4, pp. 26–34, 2001.
    [28] ISO 20958:2013, “Condition monitoring and diagnostics of machine systems —Electrical signature analysis of three-phase induction motors,” standard, International Organization for Standardization, Geneva, CH, 2013.
    [29] A. Ortiz, J. Garrido, Q. Hernandez-Escobedo, and B. Escobedo-Trujillo, “Detection of misalignment in motor via transient current signature analysis,” in 2019 IEEE International Conference on Engineering Veracruz (ICEV), IEEE, Oct. 2019.
    [30] S. Nandi, T. C. Ilamparithi, S. B. Lee, and D. Hyun, “Detection of eccentricity faults in induction machines based on nameplate parameters,” IEEE Transactions on Industrial Electronics, vol. 58, pp. 1673–1683, May 2011.
    [31] S. Nandi, H. Toliyat, and X. Li, “Condition monitoring and fault diagnosis of electrical motors—a review,” IEEE Transactions on Energy Conversion, vol. 20, pp. 719–729, Dec. 2005.
    [32] J.-H. Jung, J.-J. Lee, and B.-H. Kwon, “Online diagnosis of induction motors using MCSA,”IEEE Transactions on Industrial Electronics, vol. 53, pp. 1842–1852, Dec. 2006.
    [33] S. E. Pandarakone, Y. Mizuno, and H. Nakamura, “Distinct fault analysis of induction motor bearing using frequency spectrum determination and support vector machine,” IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 3049–3056, 2017.
    [34] R. Schoen, T. Habetler, F. Kamran, and R. Bartfield, “Motor bearing damage detection using stator current monitoring,” IEEE Transactions on Industry Applications, vol. 31, no. 6, pp. 1274–1279, 1995.
    [35] M. Blodt, P. Granjon, B. Raison, and G. Rostaing, “Models for bearing damage detection in induction motors using stator current monitoring,” IEEE Transactions on Industrial Electronics, vol. 55, pp. 1813–1822, Apr. 2008.
    [36] L. Eren and M. Devaney, “Bearing damage detection via wavelet packet decomposition of the stator current,” IEEE Transactions on Instrumentation and Measurement, vol. 53, pp. 431–436, Apr. 2004.
    [37] B. Ayhan, M.-Y. Chow, and M.-H. Song, “Multiple discriminant analysis and neural-networkbased monolith and partition fault-detection schemes for broken rotor bar in induction motors,” IEEE Transactions on Industrial Electronics, vol. 53, pp. 1298–1308, June 2006.
    [38] P. Zhang, Y. Du, T. G. Habetler, and B. Lu, “A survey of condition monitoring and protection methods for medium-voltage induction motors,” IEEE Transactions on Industry Applications, vol. 47, pp. 34–46, Jan. 2011.
    [39] C. Yang, T.-J. Kang, D. Hyun, S. B. Lee, J. A. Antonino-Daviu, and J. Pons-Llinares, Reliable detection of induction motor rotor faults under the rotor axial air duct influence”IEEE Transactions on Industry Applications, vol. 50, pp. 2493–2502, July 2014.
    [40] K. Gyftakis, J. Antonino-Daviu, R. Garcia-Hernandez, M. McCulloch, D. Howey, and A. Cardoso, “Comparative experimental investigation of the broken bar fault detectability in induction motors,” IEEE Transactions on Industry Applications, pp. 1–1, 2015.
    [41] G. Sizov, A. Sayed-Ahmed, C.-C. Yeh, and N. Demerdash, “Analysis and diagnostics of adjacent and nonadjacent broken-rotor-bar faults in squirrel-cage induction machines,” IEEE Transactions on Industrial Electronics, vol. 56, pp. 4627–4641, Nov. 2009.
    [42] A. Naha, A. K. Samanta, A. Routray, and A. K. Deb, “A method for detecting half-broken rotor bar in lightly loaded induction motors using current,” IEEE Transactions on Instrumentation and Measurement, vol. 65, pp. 1614–1625, July 2016.
    [43] S. T. Kandukuri, J. S. L. Senanyaka, V. K. Huynh, and K. G. Robbersmyr, “A two-stage fault detection and classification scheme for electrical pitch drives in offshore wind farms using support vector machine,” IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 5109–5118, 2019.
    [44] T. A. Garcia-Calva, D. Morinigo-Sotelo, A. Garcia-Perez, D. Camarena-Martinez, and R. de Jesus Romero-Troncoso, “Demodulation technique for broken rotor bar detection in inverter-fed induction motor under non-stationary conditions,” IEEE Transactions on Energy Conversion, vol. 34, pp. 1496–1503, Sept. 2019.
    [45] H. Guo and M.-K. Liu, “Induction motor faults diagnosis using support vector machine to the motor current signature,” in 2018 IEEE Industrial Cyber-Physical Systems (ICPS), IEEE, May 2018.
    [46] D. Z. Li, W. Wang, and F. Ismail, “An enhanced bispectrum technique with auxiliary frequency injection for induction motor health condition monitoring,” IEEE Transactions on Instrumentation and Measurement, vol. 64, pp. 2679–2687, Oct. 2015.
    [47] N. Q. Hu, L. R. Xia, F. S. Gu, and G. J. Qin, “A novel transform demodulation algorithm for motor incipient fault detection,” IEEE Transactions on Instrumentation and Measurement, vol. 60, pp. 480–487, Feb. 2011.
    [48] W. Wang, X. Song, G. Liu, Q. Chen, W. Zhao, and H. Zhu, “Induction motor broken rotor bar fault diagnosis based on third-order energy operator demodulated current signal,” IEEE Transactions on Energy Conversion, vol. 37, pp. 1052–1059, June 2022.
    [49] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, isolation, and reconfiguration methods,” IEEE Transaction on Control System Technology, vol. 18, no. 3, pp. 636–653, 2010.
    [50] Y. Wang, G. Ma, S. X. Ding, and C. Li, “Subspace aided data-driven design of robust fault detection and isolation systems,” Automatica, vol. 47, no. 11, pp. 2474–2480, 2011.
    [51] X. Dai and Z. Gao, “From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis,” IEEE Transaction on Industrial Informatics, vol. 9, no. 4, pp. 2226–2238, 2013.
    [52] J. Chen and F. Yang, “Data-driven subspace-based adaptive fault detection for solar power generation systems,” IET Control Theory & Applications, vol. 7, no. 11, pp. 1498–1508, 2013.
    [53] R. Isermann, “Model-based fault-detection and diagnosis – status and applications,” Annual Reviews in Control, vol. 29, no. 1, pp. 71–85, 2005.
    [54] C. D. Angelo, G. Bossio, S. Giaccone, M. Valla, J. Solsona, and G. Garcia, “Online modelbased stator-fault detection and identification in induction motors,” IEEE Transaction on Industrial Electronics, vol. 56, no. 11, pp. 4671–4680, 2009.
    [55] F. Karami, J. Poshtan, and M. Poshtan, “Detection of broken rotor bars in induction motors using nonlinear kalman filters,” ISA Transactions, vol. 49, no. 2, pp. 189–195, 2010.
    [56] F. Duan and R. Živanović, “Induction motor stator fault detection by a condition monitoring scheme based on parameter estimation algorithms,” Electric Power Components and Systems, vol. 44, no. 10, pp. 1138–1148, 2016.
    [57] A. Abid, M. T. Khan, H. Lang, and C. W. de Silva, “Adaptive system identification and severity index-based fault diagnosis in motors,” IEEE/ASME Transaction on Mechatronics, vol. 24, no. 4, pp. 1628–1639, 2019.
    [58] F. Duan and R. Zivanovic, “Condition monitoring of an induction motor stator windings via global optimization based on the hyperbolic cross points,” IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1826–1834, 2015.
    [59] C. Kallesoe, V. Cocquempot, and R. Izadi-Zamanabadi, “Model based fault detection in a centrifugal pump application,” IEEE Transaction on Control System Technology, vol. 14, no. 2, pp. 204–215, 2006.
    60] K. Tidriri, N. Chatti, S. Verron, and T. Tiplica, “Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges,” Annual Reviews in Control, vol. 42, pp. 63–81, 2016.
    [61] L. Wang and Y. Liu, “Application of simulated annealing particle swarm optimization based on correlation in parameter identification of induction motor,” Mathematical Problems in Engineering, vol. 2018, pp. 1–9, 2018.
    [62] K.-Y. Chen, W.-H. Yang, and R.-F. Fung, “System identification by using RGA with a reduced-order robust observer for an induction motor,” Mechatronics, vol. 54, pp. 1–15, 2018.
    [63] M. Ćalasan, M. Micev, Z. M. Ali, A. F. Zobaa, and S. H. E. A. Aleem, “Parameter estimation of induction machine single-cage and double-cage models using a hybrid simulated annealing–evaporation rate water cycle algorithm,” Mathematics, vol. 8, no. 6, p. 1024, 2020.
    [64] M. F. Tariq, A. Q. Khan, M. Abid, and G. Mustafa, “Data-driven robust fault detection and isolation of three-phase induction motor,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4707–4715, 2019.
    [65] W. Guo, T. Pan, Z. Li, and S. Chen, “A data-driven soft sensing approach using modified subspace identification with limited iterative expectation-maximization,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 11, pp. 9272–9283, 2020.
    [66] C. G. Dias and F. H. Pereira, “Broken rotor bars detection in induction motors running at very low slip using a hall effect sensor,” IEEE Sensors Journal, vol. 18, pp. 4602–4613, June 2018.
    [67] M. Z. Ali, M. N. S. K. Shabbir, X. Liang, Y. Zhang, and T. Hu, “Machine learning-based fault diagnosis for single- and multi-faults in induction motors using measured stator currents and vibration signals,” IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2378–2391, 2019.
    [68] J. Wang, P. Fu, L. Zhang, R. X. Gao, and R. Zhao, “Multilevel information fusion for induction motor fault diagnosis,” IEEE/ASME Transactions on Mechatronics, vol. 24, pp. 2139–2150, Oct. 2019.
    [69] P. Gangsar and R. Tiwari, “Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review,” Mechanical Systems and Signal Processing, vol. 144, p. 106908, 2020.
    [70] M. Juez-Gil, J. J. Saucedo-Dorantes, Á. Arnaiz-González, C. López-Nozal, C. García-Osorio, and D. Lowe, “Early and extremely early multi-label fault diagnosis in induction motors,”ISA Transactions, vol. 106, pp. 367–381, 2020.
    [71] I. Martin-Diaz, D. Morinigo-Sotelo, O. Duque-Perez, and R. J. Romero-Troncoso, “An experimental comparative evaluation of machine learning techniques for motor fault diagnosis under various operating conditions,” IEEE Transactions on Industry Applications, vol. 54, pp. 2215–2224, May 2018.
    [72] F. B. Abid, S. Zgarni, and A. Braham, “Distinct bearing faults detection in induction motor by a hybrid optimized SWPT and aiNet-DAG SVM,” IEEE Transactions on Energy Conversion, vol. 33, pp. 1692–1699, Dec. 2018.
    [73] Y. Liu and A. M. Bazzi, “A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: State of the art,” ISA Transactions, vol. 70, pp. 400–409, 2017.
    [74] I.-H. Kao, W.-J. Wang, Y.-H. Lai, and J.-W. Perng, “Analysis of permanent magnet synchronous motor fault diagnosis based on learning,” IEEE Transactions on Instrumentation and Measurement, vol. 68, pp. 310–324, Feb. 2019.
    [75] S. M. K. Zaman and X. Liang, “An effective induction motor fault diagnosis approach using graph-based semi-supervised learning,” IEEE Access, vol. 9, pp. 7471–7482, 2021.
    [76] B. D. E. Cherif, M. Chouai, S. Seninete, and A. Bendiabdellah, “Machine-learning-based diagnosis of an inverter-fed induction motor,” IEEE Latin America Transactions, vol. 20, pp. 901–911, June 2022.
    [77] P. Ganguly, S. Chattopadhyay, and T. Datta, “Haar-wavelet-based statistical scanning of turn fault in vehicular starter motor,” IEEE Sensors Letters, vol. 6, pp. 1–4, Apr. 2022.
    [78] X. F. St-Onge, J. Cameron, S. Saleh, and E. J. Scheme, “A symmetrical component feature extraction method for fault detection in induction machines,” IEEE Transactions on Industrial Electronics, vol. 66, pp. 7281–7289, Sept. 2019.
    [79] M. Soualhi, K. T. Nguyen, A. Soualhi, K. Medjaher, and K. E. Hemsas, “Health monitoring of bearing and gear faults by using a new health indicator extracted from current signals,”Measurement, vol. 141, pp. 37–51, 2019.
    [80] S. Jurkovic, “Induction motor* parameters extraction.” http://web.mit.edu/kirtley/binlustuff/literature/electric%20machine/motor-parameters.pdf, 2014. Accessed: 2022-07-02.
    [81] P. C. Krause and C. H. Thomas, “Simulation of symmetrical induction machinery,” IEEE Transactions on Power Apparatus and Systems, vol. 84, no. 11, pp. 1038 – 1053, 1965.
    [82] P. Krause, O. Wasynczuk, S. Sudhoff, and S. Pekarek, Analysis of Electric Machinery and Drive Systems. John Wiley & Sons, Inc., 2013.
    [83] C.-M. Ong, Dynamic Simulation of Electric Machinery using MATLAB/ SIMULINK. Prentice-Hall, Inc., 1998.
    [84] F. Duan, R. Zivanovic, S. Al-Sarawi, and D. Mba, “Induction motor parameter estimation using sparse grid optimization algorithm,” IEEE Transactions on Industrial Informatics, vol. 12, no. 4, pp. 1453–1461, 2016.
    [85] J. Vayssettes, G. Mercere, Y. Bury, and V. Pommier-Budinger, “Structured model identification algorithm based on constrained optimisation,” in 2015 European Control Conference (ECC), IEEE, 2015.
    [86] S. J. Qin, “An overview of subspace identification,” Computers & Chemical Engineering, vol. 30, no. 10-12, pp. 1502–1513, 2006.
    [87] O. Prot and G. Mercère, “Initialization of gradient-based optimization algorithms for the identification of structured state-space models,” IFAC Proceedings, vol. 44, no. 1, pp. 10782–10787, 2011.
    [88] P. V. Overschee and B. D. Moor, “N4sid: Subspace algorithms for the identification of combined deterministic-stochastic systems,” Automatica, vol. 30, no. 1, pp. 75–93, 1994.
    [89] L. A. Amezquita-Brooks, J. Liceaga-Castro, E. Liceaga-Castro, and C. E. Ugalde-Loo, “Induction motor control: Multivariable analysis and effective decentralized control of stator currents for high-performance applications,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6818–6832, 2015.
    [90] Y. Li, J. Yang, W. L. Liu, and C. L. Liao, “Multi-level model reduction and data-driven identification of the lithium-ion battery,” Energies, vol. 13, no. 15, p. 3791, 2020.
    [91] M. A. Abbasi, A. Q. Khan, G. Mustafa, M. Abid, A. S. Khan, and N. Ullah, “Data-driven fault diagnostics for industrial processes: An application to penicillin fermentation process,”IEEE Access, vol. 9, pp. 65977–65987, 2021.
    [92] P. V. Overschee and B. D. Moor, Subspace Identification for Linear Systems: TheoryImplementation-Applications. Kluwer Academic: Dordrecht, The Netherlands, 1996.
    [93] B. D. Moor, P. V. Overschee, and W. Favoreel, “Algorithms for subspace state-space system identification: An overview,” in Applied and Computational Control, Signals, and Circuits, pp. 247–311, Birkhäuser Boston, 1999.
    [94] L. Ljung, System Identification - Theory for the User (Second Edition). Prentice-Hall, Inc., 1999.
    [95] W. Purbowaskito, C.-Y. Lan, and K. Fuh, “A novel fault detection and identification framework for rotating machinery using residual current spectrum,” Sensors, vol. 21, no. 17, p. 5865, 2021.
    [96] O. Prot and G. Mercere, “Combining linear algebra and numerical optimization for gray-box affne state-space model identification,” IEEE Transactions on Automatic Control, vol. 65, no. 8, pp. 3272–3285, 2020.
    [97] C. Yu, L. Ljung, A. Wills, and M. Verhaegen, “Constrained subspace method for the identification of structured state-space models (COSMOS),” IEEE Transactions on Automatic Control, vol. 65, no. 10, pp. 4201–4214, 2020.
    [98] M. E. H. Benbouzid, “A review of induction motors signature analysis as a medium for faults detection,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 984–993, 2000.
    [99] J. Faiz, B. Ebrahimi, and H. Toliyat, “Effect of magnetic saturation on static and mixed eccentricity fault diagnosis in induction motor,” IEEE Transactions on Magnetics, vol. 45, no. 8, pp. 3137–3144, 2009.
    [100] M. Wolkiewicz, G. Tarchala, T. Orlowska-Kowalska, and C. T. Kowalski, “Online stator interturn short circuits monitoring in the DFOC induction-motor drive,” IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2517–2528, 2016.
    [101] S. Singh and N. Kumar, “Detection of bearing faults in mechanical systems using stator current monitoring,” IEEE Transactions on Industrial Information, vol. 13, no. 3, pp. 1341–1349, 2017.
    [102] P. Luong and W. Wang, “Smart sensor-based synergistic analysis for rotor bar fault detection of induction motors,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 2, pp. 1067–1075, 2020.
    [103] Y. Park, H. Choi, J. Shin, J. Park, S. B. Lee, and H. Jo, “Airgap flux based detection and classification of induction motor rotor and load defects during the starting transient,” IEEE Transactions on Industrial Electronics, vol. 67, no. 12, pp. 10075–10084, 2020.
    [104] J. Jung, S. B. Lee, C. Lim, C.-H. Cho, and K. Kim, “Electrical monitoring of mechanical looseness for induction motors with sleeve bearings,” IEEE Transactions on Energy Conversion, vol. 31, no. 4, pp. 1377–1386, 2016.
    [105] T. Yang, H. Pen, Z. Wang, and C. S. Chang, “Feature knowledge based fault detection of induction motors through the analysis of stator current data,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 3, pp. 549–558, 2016.
    [106] J. E. Garcia-Bracamonte, J. M. Ramirez-Cortes, J. de Jesus Rangel-Magdaleno, P. GomezGil, H. Peregrina-Barreto, and V. Alarcon-Aquino, “An approach on MCSA-based fault detection using independent component analysis and neural networks,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 5, pp. 1353–1361, 2019.
    [107] D. Z. Li, W. Wang, and F. Ismail, “A spectrum synch technique for induction motor health condition monitoring,” IEEE Transactions on Energy Conversion, vol. 30, no. 4, pp. 1348–1355, 2015.
    [108] S. Nandi, “Detection of stator faults in induction machines using residual saturation harmonics,” IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1201–1208, 2006.
    [109] B. Wang, J. Wang, A. Griffo, and B. Sen, “Stator turn fault detection by second harmonic in instantaneous power for a triple-redundant fault-tolerant PM drive,” IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 7279–7289, 2018.
    [110] G. Bouleux, “Oblique projection pre-processing and TLS application for diagnosing rotor bar defects by improving power spectrum estimation,” Mechanical Systems and Signal Processing, vol. 41, no. 1-2, pp. 301–312, 2013.
    [111] Y. Trachi, E. Elbouchikhi, V. Choqueuse, and M. E. H. Benbouzid, “Induction machines fault detection based on subspace spectral estimation,” IEEE Transactions on Industrial Electronics, vol. 63, no. 9, pp. 5641–5651, 2016.
    [112] A. V. Oppenheim, Discrete-time Signal Processing. Pearson Education India, 1999.
    [113] D. Jung and C. Sundstrom, “A combined data-driven and model-based residual selection algorithm for fault detection and isolation,” IEEE Transactions on Control Systems Technology, vol. 27, no. 2, pp. 616–630, 2019.
    [114] P. Pillay and Z. Xu, “Labview implementation of speed detection for mains-fed motors using motor current signature analysis,” IEEE Power Engineering Review, vol. 18, no. 6, pp. 47–48, 1998.
    [115] “Determining electric motor load and effciency.” https://www.energy.gov/sites/prod/files/2014/04/f15/10097517.pdf, 2014. Accessed: 2019-07-23.
    [116] ISO 10816-3:2009, “Mechanical vibration —Evaluation of machine vibration by measurements on non-rotating parts,” standard, International Organization for Standardization, Geneva, CH, 2009.
    [117] W. Purbowaskito, P.-Y. Wu, and C.-Y. Lan, “Permanent magnet synchronous motor driving mechanical transmission fault detection and identification: A model-based diagnosis approach,” Electronics, vol. 11, no. 9, p. 1356, 2022.
    [118] M.-Q. Tran, M.-K. Liu, Q.-V. Tran, and T.-K. Nguyen, “Effective fault diagnosis based on wavelet and convolutional attention neural network for induction motors,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–13, 2022.
    [119] K. Tidriri, T. Tiplica, N. Chatti, and S. Verron, “A generic framework for decision fusion in fault detection and diagnosis,” Engineering Applications of Artificial Intelligence, vol. 71, pp. 73–86, 2018.
    [120] M. A. Atoui and A. Cohen, “Coupling data-driven and model-based methods to improve fault diagnosis,” Computers in Industry, vol. 128, p. 103401, 2021.
    [121] J. Luo, M. Namburu, K. R. Pattipati, L. Qiao, and S. Chigusa, “Integrated model-based and data-driven diagnosis of automotive antilock braking systems,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 40, no. 2, pp. 321–336, 2010.
    [122] N. A. A. Shashoa, G. Kvaščev, A. Marjanović, and Ž. Djurović, “Sensor fault detection and isolation in a thermal power plant steam separator,” Control Engineering Practice, vol. 21, no. 7, pp. 908–916, 2013.
    [123] Y. Cheng, R. Wang, and M. Xu, “A combined model-based and intelligent method for small fault detection and isolation of actuators,” IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2403–2413, 2015.
    [124] D. Jung, K. Y. Ng, E. Frisk, and M. Krysander, “Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation,” Control Engineering Practice, vol. 80, pp. 146–156, 2018.
    [125] M. Seera, C. P. Lim, D. Ishak, and H. Singh, “Fault detection and diagnosis of induction motors using motor current signature analysis and a hybrid FMM–CART model,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 1, pp. 97–108, 2012.
    [126] D. T. Hoang and H. J. Kang, “A motor current signal-based bearing fault diagnosis using deep learning and information fusion,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 6, pp. 3325–3333, 2020.
    [127] D. Jung and E. Frisk, “Residual selection for fault detection and isolation using convex optimization,” Automatica, vol. 97, pp. 143–149, Nov. 2018.
    [128] D. Jung, H. Khorasgani, E. Frisk, M. Krysander, and G. Biswas, “Analysis of fault isolation assumptions when comparing model-based design approaches of diagnosis systems,” IFACPapersOnLine, vol. 48, no. 21, pp. 1289–1296, 2015.
    [129] M.-O. Cordier, P. Dague, F. Levy, J. Montmain, M. Staroswiecki, and L. Trave-Massuyes,“Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives,”IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol. 34, no. 5, pp. 2163–2177, 2004.
    [130] A. Bregon, G. Biswas, B. Pulido, C. Alonso-Gonzalez, and H. Khorasgani, “A common framework for compilation techniques applied to diagnosis of linear dynamic systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 7, pp. 863–876, 2014.
    [131] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector machines,”IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002.
    [132] J. Seshadrinath, B. Singh, and B. K. Panigrahi, “Investigation of vibration signatures for multiple fault diagnosis in variable frequency drives using complex wavelets,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 936–945, 2014.
    [133] P. Gangsar and R. Tiwari, “Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclasssupport vector machine algorithms,” Mechanical Systems and Signal Processing, vol. 94, pp. 464–481, 2017.
    [134] N. Lashkari, J. Poshtan, and H. F. Azgomi, “Simulative and experimental investigation on stator winding turn and unbalanced supply voltage fault diagnosis in induction motors using artificial neural networks,” ISA Transactions, vol. 59, pp. 334–342, Nov. 2015.
    [135] G. H. Bazan, P. R. Scalassara, W. Endo, A. Goedtel, W. F. Godoy, and R. H. C. Palácios,“Stator fault analysis of three-phase induction motors using information measures and artificial neural networks,” Electric Power Systems Research, vol. 143, pp. 347–356, Feb. 2017.
    [136] S. Heo and J. H. Lee, “Fault detection and classification using artificial neural networks,”IFAC-PapersOnLine, vol. 51, no. 18, pp. 470–475, 2018.
    [137] L. van der Maaten, “Accelerating t-sne using tree-based algorithms,” Journal of Machine Learning Research, vol. 15, no. 93, pp. 3221–3245, 2014.
    [138] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning algorithms,” Advances in neural information processing systems, vol. 25, 2012.
    [139] F. Nogueira, “Bayesian Optimization: Open source constrained global optimization tool for Python.” https://github.com/fmfn/BayesianOptimization, 2014. Accessed: 2022-03-14.
    [140] K. De Cock, B. Peeters, A. Vecchio, H. Van der Auweraer, and B. De Moor, “Subspace system identification for mechanical engineering,” in Proceedings of the International Conference on Noise and Vibration Engineering (ISMA 2002), Leuven, Belgium, vol. 11, 2002.

    無法下載圖示 全文公開日期 2024/08/19 (校內網路)
    全文公開日期 2024/08/19 (校外網路)
    全文公開日期 2024/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE