簡易檢索 / 詳目顯示

研究生: 周柏嘉
Po-chia Jo
論文名稱: 桌上型伴侶機器人之整合設計與應用
Integrated Design and Application of Desktop Companion Robot
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 劉霆
Tyng Liu
林沛群
Pei-chun Lin
蔡高岳
Kao-yueh Tsai
郭重顯
Chung-hsien Kuo
李維楨
Wei-chen Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 155
中文關鍵詞: 伴侶機器人順應性機構機器人手臂設計機器人安全
外文關鍵詞: companion robot, compliance mechanism, robot arm design, robot safety
相關次數: 點閱:275下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之目標係設計和製作三部可以跟人類進行多種互動功能之桌上型多功能伴侶機器人之機構。此智慧型機器人具備雙手臂,ㄧ個攝影機還有兩組驅動的輪子,且透過專用遊戲平台的加入,使機器人可以跟人類進行多種棋類對弈。本論文主要的介紹內容為手臂機構設計。手臂機構設計的基本需要為必須能夠符合多種軟體功能的應用,例如,夾取方塊、杯子、棋子以及堆疊方塊等功能,另外還需要考慮到機器人的負載及重量減輕等問題,減少能量方面的損耗。硬體設計初期以增加可靠度與耐用度為優先,進而導入商品化的設計理念,如簡化自由度數量、完整的外殼設計與機械式順應式機構的使用。本研究在第三代機器人手臂的致動器與機構中安置小型的扭力限制機構。當手臂受到超額外力作用時,該致動器與機構便會產生滑動並讓手臂得以沿受力方向移動,減低致動器受損機率,當該外力移除後,手臂則會自動回到原本位置。此新式順應式機構的可撓幅度不僅大於目前的機械式設計,且完全不影響位置控制的準確度,亦不需要裝設其他感測器,就可以達到良好的保護效果。


The goal of this research is to design and produce the mechanisms of three desktop multifunctional companion robots capable of interaction with people. Each robot has two hands, one CCD camera and two driving wheels. The robot can play various board games with human being on specially designed game boards. This dissertation research is focused on the mechanism design of the robotic arms of these companion robots. The mechanism of robotic arms were designed to fulfill tasks defined by various functions such as gripping character cubes and teacups, playing the Gobang board game, and rotating and stacking character cubes. Further emphasis was placed on load lifting capability, weight reduction, energy conservation, and performance reliability. As a priority, hardware was designed to ensure the reliability and durability. Next, efforts were placed into commercial design concepts, such as reducing the number of degrees of freedom, a complete housing design and the use of mechanical compliance mechanism. In the third generation robot, the research aimed to develop a new design of compliance mechanism in which a small-scale torque-limiting mechanism with a self-locking feature was installed between the actuator and the arm structure so as to minimize the volume while provide an ample torque limit. When the robotic arm is overloaded under an external force, a slide will occur inside the compliance mechanism so that the robotic arm will move along the direction of the external force to avoid damage. The robotic arm will automatically return to its original position after the external force is removed. The new compliance mechanism exceeds most of the current mechanical design in the range of compliance, while maintains the precision and accuracy of the displacement control, without the need of installment of any sensors.

摘要……………………………………………………………………………...……..I Abstract………………………………………………………………………………..II 致謝…………………………………………………………………………………..III 目錄…………………………………………………………………………………..IV 圖目錄………………………………………………………………………………..VI 表目錄……………………………………………………………………………...IX 1.緖論………………………………………………………………………………1 1.1.文獻探討……………………………………………………………………1 1.2.研究動機與目的……………………………………………………………8 1.3.論文的貢獻………………………………………………………………10 1.4.章節簡介…………………………………………………………………10 2.DOC伴侶機器人簡介………………………………………………………….12 2.1.各代DOC機器人硬體比較…………………………………………….14 2.2.DOC-1機器人…………………………………………………………….16 2.3.DOC-2機器人……………………………………………….…………….19 2.4.DOC-3機器人…………………………………………………………….22 3.DOC機器人之電控系統………………………………………………………28 3.1.DOC-1電路控制架構…………………………………………………….28 3.2.DOC-2電路控制架構…………………………………………………….30 3.3.DOC-3電路控制架構…………………………………………………….34 4.DOC-1機構設計……………………………………………………………….38 4.1.方塊旋轉功能………………………………….………………………….51 4.2.茶杯夾取功能………………………………………….………………….56 4.3.五子棋對弈功能………………………………………….……………….56 5.DOC-2機構設計……………………………………………………………….60 5.1.頭部機構…………………………………………………….…………….68 5.2.身體與底盤機構……………………………………….………………….71 5.3.手部機構……………………………………………………….………….73 5.3.1 肩膀輔助彈簧之數值分析………………………...……………….76 5.3.2 手肘輔助彈簧之數值分析………………………………...……….84 5.3.3 手臂動作之動態分析………………………………………...…….88 5.3.4 溫度與耗電測試……………………………………………...…….96 6.DOC-3機構設計………………………………………………………………100 6.1.DOC-3自由度架構與空間規劃…………………………………………103 6.2.DOC-3與電子棋盤之機械介面…………………………………..…….109 6.3.DOC-3手臂設計詳細介紹……………………………………..……….111 6.4.機械式順應式機構…………………………………………...………….116 6.5.順應式機構數據量測…………………………………………...……….123 7.結論與未來展望…………………………………………………...………….134 7.1.結論………………………………………………………...…………….134 7.2.未來展望………………………………………...……………………….135 參考文獻……………………………………………………...…………………….138 作者簡介……………………………………………………………………………142

[1]T. Tomonaka, Y. Koketsu, R. Hiura, K. Ohnishi, K. Sugimoto, “Computer Vision Technologies for Home-use Robot "wakamaru",” Mitsubishi Heavy Industries, Ltd. Technical Review Vol. 42 No. 1, Feb., 2005.
[2]Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura, “The intelligent ASIMO: system overview and integration,” Intelligent Robots and System, 2002. IEEE/RSJ International Conference on, Vol.3, pp. 2478-2483, 2002.
[3]J. Forlizzi, C. DiSalvo, “Service Robots in the Domestic Environment: A Study of the Roomba Vacuum in the Home,” Human-Robot Interaction, pp.258-265, Mar. 2-3, 2006.
[4]Hitachi, “Hitachi develops a robot that has the capabilities for daily life and that moves in response to dialogs with people,” at the 2005 World Exposition, Aichi, Japan, 2005.
[5]N. Roy, G. Baltus, D. Fox, F. Grmperle, J. Gortz and T. Hirsch, “Towards Personal Service Robots for the Elderly,” Workshop on Interactive Robots and Entertainment (WIRE), July 2000.
[6]A. Ohya, “Human Robot Interaction in Mobile Robot Application,” Proceedings of the 11th IEEE International Workshop on Robot and Human Interactive Communication, pp 25-27, 2002.
[7]C. Wengert, T. Fong, S. Grange and C. Baur, “Human-Oriented Tracking for Human-Robot Interaction,” International Conference on Multimodal Interfaces, 2002.
[8]王衍翔,擬人型雙手臂機器人之機電設計、運動規劃與合作,中興大學電機工程學系所碩士論文,2009。
[9]台灣大學羅仁權教授網站,http://www.ee.ntu.edu.tw/profile?id=758
[10]B. R. Shetty and M. H Ang Jr., “Active Compliance Control of a PUMA 560 Robot,” International Conference on Robotics and Automation, vol. 4, pp. 3720-3725, 1996.
[11]A. Muis and K. Ohnishi “Cooperative Mobile Manipulator with Dual Compliance Controllers based on Estimated Torque and Visual Force,” IEEE International Conference on Mechatronics, pp. 619 - 624, 2006.
[12]Y. Hasegawa, Y. Mikami, K. Watanabe and Y. Sankai, “Five-fingered assistive hand with mechanical compliance of human finger,” IEEE International Conference on Robotics and Automation, pp. 718-724, 2008.
[13]S. Kajikawa, “Variable Compliance Mechanism for Human-care Robot Arm,” 33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2736 - 2741, 2007.
[14]S. Kajikawa, “Development of a Robot Finger Module with Multi-directional Passive Compliance,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4024 - 4029, 2006.
[15]Sangcheol Lee, “Development of a New Variable Remote Center Compliance (VRCC) With Modified Elastomer Shear Pad (ESP) for Robot Assembly,” IEEE Transactions on Automation Science and Engineering, Vol. 2, pp. 193 - 197, 2005.
[16]J. J. Park, B.-S. Kim, J.-B. Song and H.-S. Kim, “Safe Link Mechanism based on Passive Compliance for Safe Human-Robot Collision,” IEEE International Conference on Robotics and Automation, pp. 1152 - 1157, 2007.
[17]J. J. Park, Y.-J. Lee, J.-B. Song and H.-S. Kim, “Safe joint mechanism based on nonlinear stiffness for safe human-robot collision,” IEEE International Conference on Robotics and Automation, pp. 2177 - 2182, 2008.
[18]R. V. Ham, B. Vanderborght, M. V. Damme, B. Verrelst and D. Lefeber, “MACCEPA: the mechanically adjustable compliance and controllable equilibrium position actuator for 'controlled passive walking',” IEEE International Conference on Robotics and Automation, pp. 2195 - 2200, 2006.
[19]B. Vanderborght, B. Verrelst, R. V. Ham, M. V. Damme, P. Beyl and D. Lefeber, “Torque and compliance control of the pneumatic artificial muscles in the biped “Lucy”,” IEEE International Conference on Robotics and Automation, pp. 842 - 847, 2006.
[20]T. Takuma, S. Hayashi and K. Hosoda, “3D bipedal robot with tunable leg compliance mechanism for multi-modal locomotion,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1097 - 1102, 2008.
[21]S.W. Chung and K.T. Chau, “A New Compliance Control Approach for Traveling-Wave Ultrasonic Motors,” IEEE Transactions on Industrial Electronics, vol. 55, pp. 302-311, 2008.
[22]薛家倫,拼字機器人之命令卡片及文字方塊影像辨識技術,國立台灣科技大學機械工程研究所碩士學位論文,2004。
[23]邱培文,人臉表情之視覺辨識技術,國立台灣科技大學機械工程研究所碩士學位論文,2005。
[24]黃文達,可供機器人與人對弈之多功能娛樂觸碰螢幕軟體系統,國立台灣科技大學機械工程研究所碩士學位論文,2007。
[25]Lynxmotion SSC-32, 32軸串列式伺服馬達控制板,http://www.lynxmotion.com/Product.aspx?productID=395
[26]Microchip PIC16F877單晶片,http://www.microchip.com/wwwproducts/devices.aspx?ddocname=en010241
[27]K. Li, S. Cong and J. Wang, “Optimization and Implementation of the localization and control algorithms in robot arm with visual feedback,” 7th World Congress on Intelligent Control and Automation, pp. 5073-5078, 2008.
[28]E. Sokic and M. Ahic-Djokic, “Simple Computer Vision System for Chess Playing Robot Manipulator as a Project-based Learning Example,” IEEE International Symposium on Signal Processing and Information Technology, pp. 75-79, 2008.
[29]Harmonic driver gearing, http://www.harmonicdrive.net/
[30]W. Lee, J. Choi and S. Kang, “Spring-Clutch: A safe torque limiter based on a spring and CAM mechanism with the ability to reinitialize its position,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5140-5145, 2009.

QR CODE