簡易檢索 / 詳目顯示

研究生: 趙珮容
Pei-Jung Chao
論文名稱: 原位電子顯微鏡技術 於觀測鋰枝晶生長機制之研究
In-operando microscopic techniques to study the growth mechanism of lithium dendrites
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
口試委員: 黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
彭維峰
Way-Faung Pong
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 186
中文關鍵詞: 原位電子顯微技術鋰金屬電池無陽極電池鋰枝晶固態電解質
外文關鍵詞: in-situ electron microscopy technology, lithium metal batteries, anode-free cell, lithium dendrites, solid-state electrolytes
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰金屬二次電池不論在業界或是學術界,都被視為未來20-50年內的主要動力來源之一,其因使用的鋰金屬擁有較高的理論電容量(3,860 mAh/g)、較低的電化學還原電位(-3.04 V vs. SHE),成為高能量密度儲能設備的首選材料,此外能提升電池能量密度亦是設計簡單的無陽極系統,可省去陽極的活性材料留下集電器,故能將電池的體積和重量得以最小化,不僅製程手法簡單也能降低材料成本,並且有望開拓更廣的應用前景。但因無陽極電池可逆性差,可能會與電解液產生副反應,使陰極有限的鋰逐漸被消耗,降低了電池的循環壽命,同時也存在安全問題,成為當前棘手的問題。
    為了解決無陽極電池系統的潛在缺陷,我們必須了解鋰枝晶複雜的生長機制,因此在本工作中,實現強大的影像分析技術,用於釐清電池內部的電化學現象,而專門設計和改良原位電池載具,以獨特的真空方形電池設計,確保電池在傳輸至SEM腔體時,能夠絕對隔絕環境中的水、氧,實驗中將使用截面平整的方形電池進行量測,相對於市售常見的圓形鈕扣電池有較大的觀測平台,透過無窗口的觀測方法,將電子束直接打在待測樣品上可提高影像的解析度,依照實驗需求可適時調控環境溫度、供應穩定的電流,獲得當前及時的影像資訊。
    研究中將對電池施加不同電流密度,觀察PEO機械強度對鋰生長的抑制效果,此外將利用Li||SS、Li||Cu兩種系統,比較鋰生長形貌差異的因素,並且使用映射(Mapping),針對PEO中的C元素的分布型態,進行動態表徵分析,了解PEO與沉積鋰交互作用的結果,此強大的分析結果可對未來在開發新型的儲能系統提供更關鍵、詳盡的優化資訊。


    Rechargeable lithium metal batteries, recognized as the major energy storage systems in the next 20-50 years by both the industry and academia, have attracted significantly research interests. This can be attributed to the high theoretical capacity (3,860 mAh/g) and low reduction potential (-3.04 V vs. SHE) of metallic lithium. With the intrinsic properties mentioned above, lithium metal batteries have become the preferred high energy density energy storage devices. Anode-free lithium metal batteries (AFLMBs) are reported to further improve the energy density of the battery effectively via a simplified cell configuration, namely the absence of the initial Li anode. In other words, the remained anode electrode of the cell is the bare current collector. Thus, the modified cell configuration minimizes the volume and weight of the AFLMB, leading to ease of battery fabrication and cost. It is expected that AFLMBs will develop a broad application prospects in the near future.
    However, the anode-free lithium metal battery has poor reversibility and may cause side reactions related to the electrolyte. The limited active lithium in the cathode material is gradually consumed upon cycling, which significantly restrict the cycle life. Moreover, the growth of lithium dendrites on the current collector also gives rise to safety concerns, which has become one of the most critical issues impeding the practical application of AFLMBs.
    In this regard, the implement of in-situ electron microscopy will can provide the most direct evidence and understanding of the lithium growth behavior under different testing conditions. In this work, realize powerful image analysis technology to clarify the electrochemical phenomena inside the battery. The unique design of the vacuum square holder ensures the isolation of battery materialst from H2O and O2 in the environment during the transferr to the SEM chamber. For the in-situ SEM experiments, a homemade square battery with a flat cross-sectional surface is fabricated for measurement, it has a larger observation platform than the common coin cell. Through the windowless observation method, the electron beam can directly interact with the sample to improve the image resolution. According to the experimental requirements, we can regulate the ambient temperature and stabilize the current supply source, and obtain real-time image information.
    In this work, polyethylene oxide (PEO)-based solid polymer electrolyte (SPE) is employed to monitor and study the effect of dendrite suppresion at different current densities. In addition, two of cell configuration, namely Li||SS and Li||Cu cells, are used to compare the difference of lithium growth morphology. Moreover, EDS mapping further reveal the elemental distribution of carbon in PEO during Li deposition and dissolution in real-time, providing dynamic understanding of the interaction between PEO and the deposited Li. To conclude, the newly designed in-situ SEM setup and the obtained in-depth information of the Li growth behavior in PEO SPE can provid new insights into the development of all-solid-state Li-metal batteries.

    摘要 I ABSTRACT III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XXV 第 1 章 鋰電池與先進儲能元件技術 1 1.1 前言 1 1.2 鋰二次電池的發展趨勢 3 1.3 無陽極鋰電池發展 7 1.3.1無陽極電池種類 9 1.3.1.1無陽極鋰液態電池 10 1.3.1.2無陽極鋰固態電池 11 1.3.2無陽極電池優化 12 1.3.2.1 集電器改良 12 1.3.2.2 改質電解質 16 1.4 研究動機與目的 21 第 2 章 文獻回顧 23 2.1原位電池設計 23 2.1.1 光學顯微鏡電池設計 23 2.1.2 掃描式電子顯微鏡電池設計 31 2.1.3 穿透式電子顯微鏡電池設計 34 2.2原位(In-situ)鋰枝晶觀測技術 37 2.2.1光學顯微鏡 37 2.2.2掃描式電子顯微鏡 44 2.2.3穿透式電子顯微鏡 52 第 3 章 實驗方法及實驗儀器 65 3.1 儀器設備 65 3.2 實驗藥品 67 3.3 SEM Cell組裝與檢測步驟 68 3.4量化影像數據及理論換算 69 3.5 儀器分析與原理 70 3.5.1 掃描式電子顯微鏡 70 3.5.2電化學測試 70 3.5.2.1充放電測試 70 3.5.2.2交流阻抗分析 71 第 4 章 結果與討論 73 4.1鈕扣電池測試PEO膜性能 73 4.2建立觀測平台及其優化 75 4.2.1原位固態電池系統的使用需求設計 75 4.3 第一版電池材料製備與組裝手法 77 4.3.1陰極電極製備-碳膠 77 4.3.2固態電解質製備-剪刀/美工刀 78 4.3.3固態電池組裝 78 4.3.4影像及電化學數據分析結果與討論 80 4.3.5工程設計結果與討論 86 4.4第二版電池材料製備與組裝手法 87 4.4.1陰極電極製備-銅膠 87 4.4.2固態電解質製備-冷凍脆斷 88 4.4.3固態電池組裝 89 4.4.4 影像及電化學數據分析結果與討論 90 4.4.4.1觀測平台的優化與測試 90 4.4.4.2觀測平台的確立與量測 98 4.4.5工程設計結果與討論 111 4.5第三版電池材料製備與組裝手法 114 4.5.1陰極電極製備-銀膠 114 4.5.2固態電解質製備-手術刀 116 4.5.3固態電池組裝 117 4.5.4 SEM載具真空優化 118 4.5.5影像電化學數據分析結果與討論 120 4.5.5.1 Li||SS系統之變電流密度沉積 120 4.5.5.2 Li||Cu系統之0.05 mA/cm2電流密度沉積 126 4.5.5.3Li||Cu系統之0.1 mA/cm2電流密度沉積 134 4.5.6工程設計結果與討論 139 4.6 SEM觀測平台優化總結 141 4.6.1 SEM載具之三代製備手法與載具比較 141 4.6.2 SEM載具VS.商業化真空傳遞顯微系統 142 4.7確立SEM Cell組裝與檢測步驟 144 第 5 章 結論 145 第 6 章 未來展望 147 參考文獻 149

    1. Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M., Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. Journal of Solid State Electrochemistry 2017, 21 (7), 1939-1964.
    2. Pillot, C., The rechargeable battery market and main trends 2016–2025. Proceedings of the 33rd Annual International Battery Seminar & Exhibit, Fort Lauderdale, FL, USA. 2017.
    3. Hagos, T. M.; Bezabh, H. K.; Huang, C.-J.; Jiang, S.-K.; Su, W.-N.; Hwang, B. J., A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques. Accounts of Chemical Research 2021, 54 (24), 4474-4485.
    4. Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B., LixCoO2 (0 x 1) A NEW CATHODE MATERIAL FOR BATTERIES OF ENERGY. 1981, 3: 171-174.
    5. Zhou, Q.; Li, Q.; Liu, S.; Yin, X.; Huang, B.; Sheng, M., High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries. Journal of Power Sources 2021, 482, 228929.
    6. Goodenough, J. B., Design considerations. Solid State Ionics 1994, 69 (3-4), 184-198.
    7. Julien, C. M.; Mauger, A.; Zaghib, K.; Groult, H., Comparative issues of cathode materials for Li-ion batteries. Inorganics 2014, 2 (1), 132-154.
    8. Molinari, N.; Mailoa, J. P.; Kozinsky, B., Effect of salt concentration on ion clustering and transport in polymer solid electrolytes: a molecular dynamics study of peo–litfsi. Chemistry of Materials 2018, 30 (18), 6298-6306.
    9. Li, Q.; Zhu, S.; Lu, Y., 3D porous Cu current collector/Li‐metal composite anode for stable lithium‐metal batteries. Advanced Functional Materials 2017, 27 (18), 1606422.
    10. Nanda, S.; Gupta, A.; Manthiram, A., Anode‐free full cells: a pathway to high‐energy density lithium‐metal batteries. Advanced Energy Materials 2021, 11 (2), 2000804.
    11. Xie, Z.; Wu, Z.; An, X.; Yue, X.; Wang, J.; Abudula, A.; Guan, G., Anode-free rechargeable lithium metal batteries: progress and prospects. Energy Storage Materials 2020, 32, 386-401.
    12. Heubner, C.; Maletti, S.; Auer, H.; Hüttl, J.; Voigt, K.; Lohrberg, O.; Nikolowski, K.; Partsch, M.; Michaelis, A., From Lithium‐Metal toward Anode‐Free Solid‐State Batteries: Current Developments, Issues, and Challenges. Advanced Functional Materials 2021, 31 (51), 2106608.
    13. Tian, Y.; An, Y.; Wei, C.; Jiang, H.; Xiong, S.; Feng, J.; Qian, Y., Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy 2020, 78, 105344.
    14. Cheng, J.-H.; Assegie, A. A.; Huang, C.-J.; Lin, M.-H.; Tripathi, A. M.; Wang, C.-C.; Tang, M.-T.; Song, Y.-F.; Su, W.-N.; Hwang, B. J., Visualization of lithium plating and stripping via in operando transmission X-ray microscopy. The Journal of Physical Chemistry C 2017, 121 (14), 7761-7766.
    15. Kim, S. H.; Kim, J. H.; Cho, S. J.; Lee, S. Y., All‐solid‐state printed bipolar Li–S batteries. Advanced Energy Materials 2019, 9 (40), 1901841.
    16. He, K.; Cheng, S. H. S.; Hu, J.; Zhang, Y.; Yang, H.; Liu, Y.; Liao, W.; Chen, D.; Liao, C.; Cheng, X., In‐Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasi‐Solid‐State Lithium Metal Batteries. Angewandte Chemie International Edition 2021, 60 (21), 12116-12123.
    17. Wang, C.; Wang, T.; Wang, L.; Hu, Z.; Cui, Z.; Li, J.; Dong, S.; Zhou, X.; Cui, G., Differentiated lithium salt design for multilayered PEO electrolyte enables a high‐voltage solid‐state lithium metal battery. Advanced Science 2019, 6 (22), 1901036.
    18. Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y., Nanoscale nucleation and growth of electrodeposited lithium metal. Nano letters 2017, 17 (2), 1132-1139.
    19. Pande, V.; Viswanathan, V., Computational screening of current collectors for enabling anode-free lithium metal batteries. ACS Energy Letters 2019, 4 (12), 2952-2959.
    20. Umh, H. N.; Park, J.; Yeo, J.; Jung, S.; Nam, I.; Yi, J., Lithium metal anode on a copper dendritic superstructure. Electrochemistry Communications 2019, 99, 27-31.
    21. Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138.
    22. Diederichsen, K. M.; McShane, E. J.; McCloskey, B. D., Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. ACS Energy Letters 2017, 2 (11), 2563-2575.
    23. Merrill, L. C.; Chen, X. C.; Zhang, Y.; Ford, H. O.; Lou, K.; Zhang, Y.; Yang, G.; Wang, Y.; Wang, Y.; Schaefer, J. L.; Dudney, N. J., Polymer–Ceramic Composite Electrolytes for Lithium Batteries: A Comparison between the Single-Ion-Conducting Polymer Matrix and Its Counterpart. ACS Applied Energy Materials 2020, 3 (9), 8871-8881.
    24. 黃可龍, 王., 劉素琴, 鋰離子電池原理與技術. 2010.
    25. Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H., Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem Rev 2020, 120 (14), 6820-6877.
    26. Dirican, M.; Yan, C.; Zhu, P.; Zhang, X., Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports 2019, 136, 27-46.
    27. Jeon, Y.; Wu, Y.; Zhang, Y.; Hwang, C.; Lee, H.-W.; Song, H.-K.; Liu, N., In situ visualization of zinc plating in gel polymer electrolyte. Electrochimica Acta 2021, 391, 138877.
    28. Shi, Y.; Wan, J.; Liu, G. X.; Zuo, T. T.; Song, Y. X.; Liu, B.; Guo, Y. G.; Wen, R.; Wan, L. J., Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi‐Solid‐State Lithium‐Metal Batteries. Angewandte Chemie International Edition 2020, 59 (41), 18120-18125.
    29. Nagao, M.; Hayashi, A.; Tatsumisago, M.; Kanetsuku, T.; Tsuda, T.; Kuwabata, S., In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li 2 S–P 2 S 5 solid electrolyte. Physical Chemistry Chemical Physics 2013, 15 (42), 18600-18606.
    30. Mehdi, B. L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D. A.; Faller, R.; Mehta, H.; Henderson, W. A.; Xu, W.; Wang, C. M.; Evans, J. E.; Liu, J.; Zhang, J. G.; Mueller, K. T.; Browning, N. D., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett 2015, 15 (3), 2168-73.
    31. Gupta, A.; Kazyak, E.; Craig, N.; Christensen, J.; Dasgupta, N. P.; Sakamoto, J., Evaluating the Effects of Temperature and Pressure on Li/PEO-LiTFSI Interfacial Stability and Kinetics. Journal of The Electrochemical Society 2018, 165 (11), A2801-A2806.
    32. Wang, M.; Sakamoto, J., Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface. Journal of Power Sources 2018, 377, 7-11.
    33. Irvine, J. T., Sinclair, D. C., & West, A. R., Electroceramics Characterization by Impedance Spectroscopy. Advanced materials 1990, 2(3), 132-138.
    34. Marzantowicz, M.; Dygas, J. R.; Krok, F.; Nowiński, J. L.; Tomaszewska, A.; Florjańczyk, Z.; Zygadło-Monikowska, E., Crystalline phases, morphology and conductivity of PEO:LiTFSI electrolytes in the eutectic region. Journal of Power Sources 2006, 159 (1), 420-430.
    35. Appetecchi, G. B., & Passerini, S., PEO-carbon composite lithium polymer electrolyte. Electrochimica Acta 2000, 45(13).
    36. Hong, M.; Dong, Q.; Xie, H.; Clifford, B. C.; Qian, J.; Wang, X.; Luo, J.; Hu, L., Ultrafast Sintering of Solid-State Electrolytes with Volatile Fillers. ACS Energy Letters 2021, 6 (11), 3753-3760.
    37. Guo, J.; Zheng, J.; Zhang, W.; Lu, Y., Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries. Energy & Fuels 2021, 35 (14), 11118-11140.
    38. Sun, Y.-K.; Kamat, P. V., Advances in Solid-State Batteries, a Virtual Issue. ACS Publications: 2021.
    39. Cai, Y.; Li, C.; Zhao, Z.; Mu, D.; Wu, B., Air stability and interfacial compatibility of sulfide solid electrolytes for solid state lithium batteries: Advances and perspectives. ChemElectroChem, 2022, 9(5), e202101479.
    40. Guo, R.; Hobold, G. M.; Gallant, B. M., The ionic interphases of the lithium anode in solid state batteries. Current Opinion in Solid State and Materials Science 2022, 26 (1), 100973.
    41. Choi, H. J.; Kang, D. W.; Park, J. W.; Park, J. H.; Lee, Y. J.; Ha, Y. C.; Lee, S. M.; Yoon, S. Y.; Kim, B. G., In Situ Formed Ag‐Li Intermetallic Layer for Stable Cycling of All‐Solid‐State Lithium Batteries. Advanced Science 2022, 9 (1), 2103826.
    42. Zhao, F.; Zhang, S.; Li, Y.; Sun, X., Emerging Characterization Techniques for Electrode Interfaces in Sulfide‐Based All‐Solid‐State Lithium Batteries. Small Structures 2022, 3 (1), 2100146.
    43. Sun, M.; Liu, T.; Yuan, Y.; Ling, M.; Xu, N.; Liu, Y.; Yan, L.; Li, H.; Liu, C.; Lu, Y.; Shi, Y.; He, Y.; Guo, Y.; Tao, X.; Liang, C.; Lu, J., Visualizing Lithium Dendrite Formation within Solid-State Electrolytes. ACS Energy Letters 2021, 6 (2), 451-458.
    44. Rong, G.; Zhang, X.; Zhao, W.; Qiu, Y.; Liu, M.; Ye, F.; Xu, Y.; Chen, J.; Hou, Y.; Li, W., Liquid‐phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution. Advanced Materials 2017, 29 (13), 1606187.
    45. Golozar, M.; Paolella, A.; Demers, H.; Bessette, S.; Lagacé, M.; Bouchard, P.; Guerfi, A.; Gauvin, R.; Zaghib, K., In situ observation of solid electrolyte interphase evolution in a lithium metal battery. Communications Chemistry 2019, 2 (1).
    46. Sheng, O.; Zheng, J.; Ju, Z.; Jin, C.; Wang, Y.; Chen, M.; Nai, J.; Liu, T.; Zhang, W.; Liu, Y., In Situ Construction of a LiF‐Enriched Interface for Stable All‐Solid‐State Batteries and its Origin Revealed by Cryo‐TEM. Advanced Materials 2020, 32 (34), 2000223.
    47. Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H., Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature materials 2019, 18 (4), 384-389.
    48. Ju, Z.; Nai, J.; Wang, Y.; Liu, T.; Zheng, J.; Yuan, H.; Sheng, O.; Jin, C.; Zhang, W.; Jin, Z., Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nature communications 2020, 11 (1), 1-10.
    49. Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G., Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature communications 2015, 6 (1), 1-9.
    50. Liang, Z.; Lin, D.; Zhao, J.; Lu, Z.; Liu, Y.; Liu, C.; Lu, Y.; Wang, H.; Yan, K.; Tao, X., Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proceedings of the National Academy of Sciences 2016, 113 (11), 2862-2867.
    51. Zhang, H.; Judez, X.; Santiago, A.; Martinez‐Ibañez, M.; Muñoz‐Márquez, M. Á.; Carrasco, J.; Li, C.; Eshetu, G. G.; Armand, M., Fluorine‐Free Noble Salt Anion for High‐Performance All‐Solid‐State Lithium–Sulfur Batteries. Advanced energy materials 2019, 9 (25), 1900763.
    52. Luo, W.; Gong, Y.; Zhu, Y.; Li, Y.; Yao, Y.; Zhang, Y., K.(Kelvin) Fu, G. Pastel, C.-F. Lin, Y. Mo, ED Wachsman and L. Hu, Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. Adv. Mater 2017, 29, 1606042.
    53. Sheng, O.; Jin, C.; Luo, J.; Yuan, H.; Huang, H.; Gan, Y.; Zhang, J.; Xia, Y.; Liang, C.; Zhang, W., Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano letters 2018, 18 (5), 3104-3112.
    54. Chi, S.-S.; Liu, Y.; Zhao, N.; Guo, X.; Nan, C.-W.; Fan, L.-Z., Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Materials 2019, 17, 309-316.
    55. Eshetu, G. G.; Judez, X.; Li, C.; Bondarchuk, O.; Rodriguez‐Martinez, L. M.; Zhang, H.; Armand, M., Lithium azide as an electrolyte additive for all‐solid‐state lithium–sulfur batteries. Angewandte chemie international edition 2017, 56 (48), 15368-15372.
    56. Eshetu, G. G.; Judez, X.; Li, C.; Martinez-Ibañez, M.; Gracia, I.; Bondarchuk, O.; Carrasco, J.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M., Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect. Journal of the American chemical society 2018, 140 (31), 9921-9933.
    57. Mirsakiyeva, A.; Ebadi, M.; Araujo, C. M.; Brandell, D.; Broqvist, P.; Kullgren, J., Initial steps in PEO decomposition on a Li metal electrode. The Journal of Physical Chemistry C 2019, 123 (37), 22851-22857.
    58. Ebadi, M.; Marchiori, C.; Mindemark, J.; Brandell, D.; Araujo, C. M., Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations. Journal of Materials Chemistry A 2019, 7 (14), 8394-8404.
    59. Ebadi, M.; Costa, L. T.; Araujo, C. M.; Brandell, D., Modelling the polymer electrolyte/Li-metal interface by molecular dynamics simulations. Electrochimica Acta 2017, 234, 43-51.
    60. Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G., Intermolecular chemistry in solid polymer electrolytes for high‐energy‐density lithium batteries. Advanced Materials 2019, 31 (50), 1902029.
    61. Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.-L.; Joubert, L.-M.; Chin, R.; Koh, A. L.; Yu, Y., Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 2017, 358 (6362), 506-510.
    62. Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M.-H.; Alvarado, J.; Schroeder, M. A.; Yang, Y., Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572 (7770), 511-515.
    63. Zachman, M. J.; Tu, Z.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F., Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 2018, 560 (7718), 345-349.
    64. Yuan, H.; Nai, J.; Tian, H.; Ju, Z.; Zhang, W.; Liu, Y.; Tao, X.; Lou, X. W., An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science advances 2020, 6 (10), eaaz3112.

    無法下載圖示 全文公開日期 2027/08/25 (校內網路)
    全文公開日期 2027/08/25 (校外網路)
    全文公開日期 2027/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE