簡易檢索 / 詳目顯示

研究生: 何俊潔
Chun-Chieh Ho
論文名稱: 利用自修復聚合物薄膜抑制鋰枝晶以提升無陽極鋰電池循環效率
Enhancement of Cycling Efficiency in Lithium Anode Free Batteries by Inhibiting Lithium Dendrites with Self-Healing Polymer Films
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 江志強
Jyh-Chiang Jiang
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 73
中文關鍵詞: 自修復無陽極鋰枝晶修飾電極
外文關鍵詞: Self-healing, Anode free, Lithium dendrite, Modified current collector
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 提升能量密度為現今研發鋰電池重要的課題之一,無陽極鋰電池可以將正極提供之鋰離子完全傳遞到負極並循環利用,1,2有效降低電池總重量,顯著提高電池整體能量密度並且降低了成本。然而,鋰離子以非預期之沉積導致低庫倫效率和鋰枝晶生長的挑戰,阻礙當前無陽極鋰電池的發展。因為不均勻的鋰鍍層和原始銅電極上不穩定的SEI層形成,導致電容量快速的下降,所以我們使用 P(AMPS-co-BA)具有特殊官能基的設計進而修飾銅箔集電體以抑制鋰枝晶生成。修飾後的集電體與未修飾集電體在鋰沉積與剝離的實驗中(-0.5~1.0V,0.5mAh/cm2)可以看出,修飾後的集電體在100次的循環內都維持穩定的電壓且維持99.8%的庫倫效率,而未修飾的集電體的有嚴重的過電位現象以及17.7%的低庫倫效率。由庫倫效率結果可以證明具有特殊官能基的P(AMPS-co-BA)塗層具有提升鋰沉脫能力,能有效抑制鋰枝晶生長且提高無陽極鋰電池的壽命。


    Recently, electric vehicles(EV) is blooming owing to fuel resource shortage. Improving the energy density plays an important role for EV. High energy density for EV equals longer travel and better energy efficiency. Anode-free batteries have obtained considerable attention for commercial application due to high energy density and low cost. However, uneven lithium plating and unstable SEI layer will lead to low coulombic efficiency, poor capacity retention and dendrite formation, limiting the development of anode-free lithium batteries. In this work, we synthesized co-polymer P (AMPS-co-BA) as the artificial protection layer onto Cu foil. P(AMPS-co-BA) is block co-polymer with two functional groups, BA and AMPS, respectively. In the experiment of lithium deposition and stripping (-0.5~1.0V, 0.5mAh/cm2), it can be seen that the modified current collector and the prsitin current collector. These functional groups supply elasticity and ionic conductivity. Based on our results, after 100 cycles of lithium plating/stripping, it is indicated that the artificial layer can successfully suppress the formation of lithium dendrites, thereby enhancing the coulombic efficiency to 99.8% during lithium plating and stripping. The results of the coulombic efficiency demonstrate that the P(AMPS-co-BA) coating with functional groups can improve the adsorbtion and desorption stability of lithium, effectively inhibiting the growth of lithium dendrites and enhancing the lifespan of anode-free lithium batteries.

    摘要 I Abstract II Figure Caption V Chapter 1 Introduction 1 Chapter 2 Basic Theory and Literature Review 4 2.1 Limithium battery 4 2.1.1 Graphite battery 5 2.1.2 Lithium ion battery 8 2.1.3 Anode free lithium battery 11 2.1.3.1 Electrode current collector modification 12 2.1.3.2 Modification of liquid electrolytes 13 2.2 Anode Collector Polymer Modification Layer 15 2.2.1 PVDF/PMMA 16 2.2.2 PEO 18 2.2.3 AMPS / BA 20 2.2.1.1 PAMPS property 20 2.2.1.2 PBA preperty 22 2.3 Self-Healing Behavior 24 2.3.1 PAMPS self-healing mechnism 24 2.3.2 PAMPS selfing-healing application in battery 26 Chapter 3 Experimental Section 28 3.1 Experimental Materials 28 3.2 Instrument 28 3.3 Experimental Method 29 3.3.1 Experiment section 29 3.3.2 Preparation of P(AMPS-co-BA) thin films 29 3.3.3 Structure of Li/Cu half-cell 29 3.4 Experimental analysis method 30 3.4.1 Material Analysis 30 3.4.2 Electrochemical test 31 3.4.3 Optical and elemental analysis 31 Chapter 4 Results and Discussion 32 4.1 The self-healing properties of P(AMPS-co-BA) 32 4.2 Electrode-electrolyte surface contact angle and solubility at room temperature and atmosphere 33 4.3 The surface morphology and thickness of the modified copper current collector. 34 4.4 Cycle voltammetry test 36 4.5 Nucleation potential 37 4.6 Tafel number 38 4.7 Pure and modified copper electrochemical testing 39 4.8 SEM characterization of deposited lithium 42 4.9 XPS 43 4.10 FTIR 44 4.11 Electrochemical testing & SEM of other modified copper 45 4.12 Long cycles of modified electrode 48 4.13 Cycle test & SEM of modified Lithium 50 Chapter 5 Conclusion 52 Reference 52

    (1) Assegie, A. A.; Cheng, J. H.; Kuo, L. M.; Su, W. N.; Hwang, B. J. Polyethylene Oxide Film Coating Enhances Lithium Cycling Efficiency of an Anode-Free Lithium-Metal Battery. Nanoscale 2018, 10 (13), 6125-6138.
    (2) Xiong, X.; Zhi, R.; Zhou, Q.; Yan, W.; Zhu, Y.; Chen, Y.; Fu, L.; Yu, N.; Wu, Y. A Binary PMMA/PVDF Blend Film Modified Substrate Enables a Superior Lithium Metal Anode for Lithium Batteries. Adv. Mater. 2021, 2 (13), 4240-4245.
    (3) Sun, Y. K.; Chen, Z.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries. Nat. Mater. 2012, 11 (11), 942-947.
    (4) Li, P.; Kim, H.; Ming, J.; Jung, H. G.; Belharouak, I.; Sun, Y. K. Quasi-Compensatory Effect in Emerging Anode-Free Lithium Batteries. E-Science 2021, 1 (1), 3-12.
    (5) Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114 (23), 11503-11618.
    (6) Li, H. Practical Evaluation of Li-Ion Batteries. Joule 2019, 3 (4), 911-914.
    (7) Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Lithium Metal Anodes for Rechargeable Batteries. Energy & Environ. Sci. 2014, 7 (2), 513-537.
    (8) Louli, A. J.; Genovese, M.; Weber, R.; Hames, S.; Logan, E.; Dahn, J. Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. J. Electrochem. Soc. 2019, 166 (8), A1291-A1299.
    (9) Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries. Nat. Energy 2018, 3 (1), 16-21.
    (10) Neudecker, B.; Dudney, N.; Bates, J. “Lithium‐Free” Thin‐Film Battery with in Situ Plated Li Anode. J. Electrochem. Soc. 2000, 147 (2), 517.
    (11) Schnell, J.; Knörzer, H.; Imbsweiler, A. J.; Reinhart, G. Solid Versus Liquid-a Bottom‐Up Calculation Model to Analyze the Manufacturing Cost of Future High‐Energy Batteries. Energy Technology 2020, 8 (3), 1901237.
    (12) Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A. Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries. Nat. Energy 2019, 4 (3), 180-186.
    (13) Weber, R.; Genovese, M.; Louli, A.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte. Nat. Energy 2019, 4 (8), 683-689.
    (14) Tang, Y.; Zhang, L.; Chen, J.; Sun, H.; Yang, T.; Liu, Q.; Huang, Q.; Zhu, T.; Huang, J. Electro-Chemo-Mechanics of Lithium in Solid State Lithium Metal Batteries. Energy Environ. Sci. 2021, 14 (2), 602-642.
    (15) Cohn, A. P.; Muralidharan, N.; Carter, R.; Share, K.; Pint, C. L. Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. Nano Lett. 2017, 17 (2), 1296-1301.
    (16) Arfwedson, A. Untersuchung Einiger Bei Der Eisen-Grube Von Utö Vorkommenden Fossilien Und Von Einem Darin Gefundenen Neuen Feuerfesten Alkali. J. Chem. Phys. 1818, 22, 93-117.
    (17) Berzelius, J. J. Ein Neues Mineralisches Alkali Und Ein Neues Metall. J. Chem. Phys. 1817, 21, 44-48.
    (18) Reddy, M. V.; Mauger, A.; Julien, C. M.; Paolella, A.; Zaghib, K. Brief History of Early Lithium-Battery Development. Materials 2020, 13 (8), 1884.
    (19) Lewis, G. N.; Keyes, F. G. The Potential of the Lithium Electrode. J. Am. Chem. Soc. 1913, 35 (4), 340-344.
    (20) Liu, P.; Ma, Q.; Fang, Z.; Ma, J.; Hu, Y. S.; Zhou, Z. B.; Li, H.; Huang, X. J.; Chen, L. Q. Concentrated Dual-Salt Electrolytes for Improving the Cycling Stability of Lithium Metal Anodes. Chin. Phys. B 2016, 25 (7), 078203.
    (21) Harris, W. S. Electrochemical Studies in Cyclic Esters; University of California Radiation Laboratory, 1958.
    (22) Eichinger, G.; Besenhard, J. High Energy Density Lithium Cells: Part II. Cathodes and Complete Cells. J. Electroanal. Chem. Interfacial Electrochem. 1976, 72 (1), 1-31.
    (23) Ziegler, M. S.; Trancik, J. E. Re-Examining Rates of Lithium-Ion Battery Technology Improvement and Cost Decline. Energy. Environ. Sci. 2021, 14 (4), 1635-1651.
    (24) Cangaz, S.; Hippauf, F.; Reuter, F. S.; Doerfler, S.; Abendroth, T.; Althues, H.; Kaskel, S. Enabling High‐Energy Solid‐State Batteries with Stable Anode Interphase by the Use of Columnar Silicon Anodes. Adv. Energy Mater. 2020, 10 (34), 2001320.
    (25) Manthiram, A. A Reflection on Lithium-Ion Battery Cathode Chemistry. Nat. Commun. 2020, 11 (1), 1550.
    (26) Logan, E.; Dahn, J. Electrolyte Design for Fast-Charging Li-Ion Batteries. Trends Chem 2020, 2 (4), 354-366.
    (27) Li, B.; Wang, Y.; Yang, S. A Material Perspective of Rechargeable Metallic Lithium Anodes. Adv. Energy Mater. 2018, 8 (13), 1702296.
    (28) Guerard, D.; Herold, A. Intercalation of Lithium into Graphite and Other Carbons. Carbon 1975, 13 (4), 337-345.
    (29) Armand, M.; Duclot, M. Electrochemical Generators for Producing Current and New Materials for Their Manufacture; 1981.
    (30) Aurbach, D.; Teller, H.; Koltypin, M.; Levi, E. On the Behavior of Different Types of Graphite Anodes. J. Power Sources 2003, 119, 2-7.
    (31) Liang, H. J.; Hou, B. H.; Li, W. H.; Ning, Q. L.; Yang, X.; Gu, Z. Y.; Nie, X. J.; Wang, G.; Wu, X. L. Staging Na/K-Ion De-/Intercalation of Graphite Retrieved from Spent Li-Ion Batteries: In Operando X-Ray Diffraction Studies and an Advanced Anode Material for Na/K-Ion Batteries. Energy Environ. Sci. 2019, 12 (12), 3575-3584.
    (32) Wang, G.; Yu, M.; Feng, X. Carbon Materials for Ion-Intercalation Involved Rechargeable Battery Technologies. Chem. Soc. Rev. 2021, 50 (4), 2388-2443.
    (33) Andersen, H. L.; Djuandhi, L.; Mittal, U.; Sharma, N. Strategies for the Analysis of Graphite Electrode Function. Adv. Energy Mater. 2021, 11 (48), 2102693.
    (34) Dai, K.; Wang, Z.; Ai, G.; Zhao, H.; Yuan, W.; Song, X.; Battaglia, V.; Sun, C.; Wu, K.; Liu, G. The Transformation of Graphite Electrode Materials in Lithium-Ion Batteries after Cycling. J. Power Sources 2015, 298, 349-354.
    (35) Agubra, V. A.; Fergus, J. W. The Formation and Stability of the Solid Electrolyte Interface on the Graphite Anode. J. Power Sources 2014, 268, 153-162.
    (36) Lin, N.; Jia, Z.; Wang, Z.; Zhao, H.; Ai, G.; Song, X.; Bai, Y.; Battaglia, V.; Sun, C.; Qiao, J. Understanding the Crack Formation of Graphite Particles in Cycled Commercial Lithium-Ion Batteries by Focused Ion Beam-Scanning Electron Microscopy. J. Power Sources 2017, 365, 235-239.
    (37) Qiao, Y.; Zhao, H.; Shen, Y.; Li, L.; Rao, Z.; Shao, G.; Lei, Y. Recycling of Graphite Anode from Spent Lithium‐Ion Batteries: Advances and Perspectives. EcoMat 2023, e12321.
    (38) Mauger, A.; Julien, C. M.; Goodenough, J. B.; Zaghib, K. Tribute to Michel Armand: From Rocking Chair-Li-Ion to Solid-State Lithium Batteries. J. Electrochem. Soc. 2019, 167 (7), 070507.
    (39) Armand, M.; Duclot, M. Ionically and Pref. Electronically Conductive Electrode-Comprising Agglomerate of Active Electrode Material and Solid Soln. of Ionic Cpd. Polymer Pref. Polyoxyalkylene. French Patent 1978, 7, 22.
    (40) Lazzari, M.; Scrosati, B. A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes. J. Electrochem. Soc. 1980, 127 (3), 773.
    (41) Nagaura, T.; Nagamine, M.; Tanabe, I.; Miyamoto, N. Solid-State Batteries with Sulfide-Based Electrolytes. Prog. Batteries Sol. Cells 1989, 8, 84-88.
    (42) Nagaura, T. Lithium Ion Rechargeable Battery. Prog. Batteries Sol. Cells 1990, 9, 209.
    (43) Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero‐Strain Insertion Material of Li [Li1/3Ti5/3]O4 for Rechargeable Lithium Cells. J. Electrochem. Soc. 1995, 142 (5), 1431.
    (44) Zhao, L.; Pan, H. L.; Hu, Y. S.; Li, H.; Chen, L. Q. Spinel Lithium Titanate (Li4Ti5O12) as Novel Anode Material for Room-Temperature Sodium-Ion Battery. Chin. Phys. B 2012, 21 (2), 028201.
    (45) Sun, Y.; Zhao, L.; Pan, H.; Lu, X.; Gu, L.; Hu, Y. S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Direct Atomic-Scale Confirmation of Three-Phase Storage Mechanism in Li4Ti5O12 Anodes for Room-Temperature Sodium-Ion Batteries. Nat. Commun. 2013, 4 (1), 1870.
    (46) Lin, D.; Liu, Y.; Cui, Y. Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotech 2017, 12 (3), 194-206.
    (47) Wu, F.; Maier, J.; Yu, Y. Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries. Chem. Soc. Rev. 2020, 49 (5), 1569-1614.
    (48) Whittingham, M. S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104 (10), 4271-4302.
    (49) Howlett, P. C.; Macfarlane, D. R.; Hollenkamp, A. F. A Sealed Optical Cell for the Study of Lithium-Electrode | Electrolyte Interfaces. J. Power Sources 2003, 114 (2), 277-284.
    (50) Li, Z.; Huang, J.; Liaw, B. Y.; Metzler, V.; Zhang, J. A Review of Lithium Deposition in Lithium-Ion and Lithium Metal Secondary Batteries. J. Power Sources 2014, 254, 168-182.
    (51) Garche, J.; Dyer, C.; Moseley, P. T.; Ogumi, Z.; Rand, D. A.; Scrosati, B. Encyclopedia of Electrochemical Power Sources; Newnes, 2013.
    (52) Yasin, G.; Arif, M.; Mehtab, T.; Lu, X.; Yu, D.; Muhammad, N.; Nazir, M. T.; Song, H. Understanding and Suppression Strategies toward Stable Li Metal Anode for Safe Lithium Batteries. Energy Stor. Mater. 2020, 25, 644-678.
    (53) Wood, K. N.; Noked, M.; Dasgupta, N. P. Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior. ACS Energy Lett. 2017, 2 (3), 664-672.
    (54) Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions. Solid State Ion 2002, 148 (3-4), 405-416.
    (55) Chen, S.; Zhang, J.; Nie, L.; Hu, X.; Huang, Y.; Yu, Y.; Liu, W. All‐Solid‐State Batteries with a Limited Lithium Metal Anode at Room Temperature Using a Garnet‐Based Electrolyte. Adv. Mater. 2021, 33 (1), 2002325.
    (56) Tian, Y.; An, Y.; Wei, C.; Jiang, H.; Xiong, S.; Feng, J.; Qian, Y. Recently Advances and Perspectives of Anode-Free Rechargeable Batteries. Nano Energy 2020, 78, 105344.
    (57) Varzi, A.; Thanner, K.; Scipioni, R.; Di Lecce, D.; Hassoun, J.; Dörfler, S.; Altheus, H.; Kaskel, S.; Prehal, C.; Freunberger, S. A. Current Status and Future Perspectives of Lithium Metal Batteries. J. Power Sources 2020, 480, 228803.
    (58) Tong, Z.; Bazri, B.; Hu, S. F.; Liu, R. S. Interfacial Chemistry in Anode-Free Batteries: Challenges and Strategies. J. Mater Chem. A 2021, 9 (12), 7396-7406.
    (59) Wang, M. J.; Carmona, E.; Gupta, A.; Albertus, P.; Sakamoto, J. Enabling “Lithium-Free” Manufacturing of Pure Lithium Metal Solid-State Batteries through in Situ Plating. Nat. Commun. 2020, 11 (1), 5201.
    (60) Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J. G. Anode‐Free Rechargeable Lithium Metal Batteries. Adv. Funct. Mater. 2016, 26 (39), 7094-7102.
    (61) Yan, K.; Lu, Z.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Selective Deposition and Stable Encapsulation of Lithium through Heterogeneous Seeded Growth. Nat. Energy 2016, 1 (3), 1-8.
    (62) Shen, C.; Gu, J.; Li, N.; Peng, Z.; Xie, K. Single Crystal Cu (110) Inducing Lateral Growth of Electrodeposition Li for Dendrite-Free Li Metal-Based Batteries. J. Power Sources 2021, 501, 229969.
    (63) Zhang, S. S.; Fan, X.; Wang, C. A Tin-Plated Copper Substrate for Efficient Cycling of Lithium Metal in an Anode-Free Rechargeable Lithium Battery. Electrochim. Acta 2017, 258, 1201-1207.
    (64) Zhang, S. S.; Fan, X.; Wang, C. An In-Situ Enabled Lithium Metal Battery by Plating Lithium on a Copper Current Collector. Electrochem Commun 2018, 89, 23-26.
    (65) Pande, V.; Viswanathan, V. Computational Screening of Current Collectors for Enabling Anode-Free Lithium Metal Batteries. ACS Energy Lett. 2019, 4 (12), 2952-2959.
    (66) Umh, H. N.; Park, J.; Yeo, J.; Jung, S.; Nam, I.; Yi, J. Lithium Metal Anode on a Copper Dendritic Superstructure. Electrochem Commun 2019, 99, 27-31.
    (67) Hagos, T. T.; Thirumalraj, B.; Huang, C. J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S. F.; Su, W. N. Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2019, 11 (10), 9955-9963.
    (68) Sahalie, N. A.; Assegie, A. A.; Su, W. N.; Wondimkun, Z. T.; Jote, B. A.; Thirumalraj, B.; Huang, C. J.; Yang, Y. W.; Hwang, B. J. Effect of Bifunctional Additive Potassium Nitrate on Performance of Anode Free Lithium Metal Battery in Carbonate Electrolyte. J. Power Sources 2019, 437, 226912.
    (69) Hagos, T. M.; Hagos, T. T.; Bezabh, H. K.; Berhe, G. B.; Abrha, L. H.; Chiu, S. F.; Huang, C. J.; Su, W. N.; Dai, H.; Hwang, B. J. Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS A. E. M. 2020, 3 (11), 10722-10733.
    (70) Alvarado, J.; Schroeder, M. A.; Pollard, T. P.; Wang, X.; Lee, J. Z.; Zhang, M.; Wynn, T.; Ding, M.; Borodin, O.; Meng, Y. S. Bisalt Ether Electrolytes: A Pathway Towards Lithium Metal Batteries with Ni-Rich Cathodes. Energy Environ. Sci. 2019, 12 (2), 780-794.
    (71) Beyene, T. T.; Bezabh, H. K.; Weret, M. A.; Hagos, T. M.; Huang, C. J.; Wang, C. H.; Su, W. N.; Dai, H.; Hwang, B. J. Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. J. Electrochem. Soci. 2019, 166 (8), A1501-A1509.
    (72) Heubner, C.; Maletti, S.; Auer, H.; Hüttl, J.; Voigt, K.; Lohrberg, O.; Nikolowski, K.; Partsch, M.; Michaelis, A. From Lithium‐Metal toward Anode‐Free Solid‐State Batteries: Current Developments, Issues, and Challenges. Adv. Funct. Mater. 2021, 31 (51), 2106608.
    (73) Ma, S.; Lin, H.; Yang, L.; Tong, Q.; Pan, F.; Weng, J.; Zheng, S. High Thermal Stability and Low Impedance Polypropylene Separator Coated with Aluminum Phosphate. Electrochim. Acta 2019, 320, 134528.
    (74) Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. Effects of Polymer Coatings on Electrodeposited Lithium Metal. J. Am. Chem. Soc. 2018, 140 (37), 11735-11744.
    (75) Steiger, J.; Richter, G.; Wenk, M.; Kramer, D.; Mönig, R. Comparison of the Growth of Lithium Filaments and Dendrites under Different Conditions. Electrochem Commun 2015, 50, 11-14.
    (76) Xue, Z.; He, D.; Xie, X. Poly (Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries. J. Mater. Chem. A 2015, 3 (38), 19218-19253.
    (77) Ding, Y.; Zhang, J.; Chang, L.; Zhang, X.; Liu, H.; Jiang, L. Preparation of High‐Performance Ionogels with Excellent Transparency, Good Mechanical Strength, and High Conductivity. Adv. Mater. 2017, 29 (47), 1704253.
    (78) Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double‐Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15 (14), 1155-1158.
    (79) Yoshida, Y.; Baba, O.; Saito, G. Ionic Liquids Based on Dicyanamide Anion: Influence of Structural Variations in Cationic Structures on Ionic Conductivity. J. Phys. Chem. B 2007, 111 (18), 4742-4749.
    (80) Dai, C. A.; Chang, C. J.; Kao, A. C.; Tsai, W. B.; Chen, W. S.; Liu, W. M.; Shih, W. P.; Ma, C. C. Polymer Actuator Based on PVA/PAMPS Ionic Membrane: Optimization of Ionic Transport Properties. Sens. Actuator A Phys. 2009, 155 (1), 152-162.
    (81) Michot, T.; Nishimoto, A.; Watanabe, M. Electrochemical Properties of Polymer Gel Electrolytes Based on Poly (vinylidene fluoride) Copolymer and Homopolymer. Electrochim. Acta 2000, 45 (8-9), 1347-1360.
    (82) Tian, Z.; He, X.; Pu, W.; Wan, C.; Jiang, C. Preparation of Poly (acrylonitrile-butyl acrylate) Gel Electrolyte for Lithium-Ion Batteries. Electrochim. Acta 2006, 52 (2), 688-693.
    (83) Qin, L.; Qiu, J.; Liu, M.; Ding, S.; Shao, L.; Lü, S.; Zhang, G.; Zhao, Y.; Fu, X. Mechanical and Thermal Properties of Poly (lactic acid) Composites with Rice Straw Fiber Modified by Poly (butyl acrylate). Chem. Eng. J. 2011, 166 (2), 772-778.
    (84) Xing, X.; Li, L.; Wang, T.; Ding, Y.; Liu, G.; Zhang, G. A Self-Healing Polymeric Material: From Gel to Plastic. J. Mater. Chem. A 2014, 2 (29), 11049-11053.
    (85) Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-Healing Chemistry Enables the Stable Operation of Silicon Microparticle Anodes for High-Energy Lithium-Ion Batteries. Nature Chem. 2013, 5 (12), 1042-1048.
    (86) Cui, X.; Chu, Y.; Qin, L.; Pan, Q. Stabilizing Li Metal Anodes through a Novel Self-Healing Strategy. ACS Sustain. Chem. Eng. 2018, 6 (8), 11097-11104.
    (87) Çavuş, S. Poly (methacrylamide‐co‐2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) Hydrogels: Investigation of pH‐and Temperature‐Dependent Swelling Characteristics and Their Characterization. J Polym Sci B Polym Phys 2010, 48 (23), 2497-2508.
    (88) Beyene, T. T.; Jote, B. A.; Wondimkun, Z. T.; Olbassa, B. W.; Huang, C. J.; Thirumalraj, B.; Wang, C. H.; Su, W. N.; Dai, H.; Hwang, B. J. Effects of Concentrated Salt and Resting Protocol on Solid Electrolyte Interface Formation for Improved Cycle Stability of Anode-Free Lithium Metal Batteries. ACS App. Mater. Interfaces 2019, 11 (35), 31962-31971.
    (89) Hu, X.-Y.; Xu, P.; Deng, S.; Lei, J.; Lin, X.; Wu, Q. H.; Zheng, M.; Dong, Q. Inducing Ordered Li Deposition on a Pani-Decorated Cu Mesh for an Advanced Li Anode. J. Mater. Chem. A 2020, 8 (33), 17056-17064.
    (90) Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K. Improved Electrolytes for Li-Ion Batteries: Mixtures of Ionic Liquid and Organic Electrolyte with Enhanced Safety and Electrochemical Performance. J. Power Sources 2010, 195 (3), 845-852.
    (91) Ozhabes, Y.; Gunceler, D.; Arias, T. Stability and Surface Diffusion at Lithium-Electrolyte Interphases with Connections to Dendrite Suppression. ArXiv Preprint ArXiv:1504.05799 2015.
    (92) Guo, R.; Lu, L.; Ouyang, M.; Feng, X. Mechanism of the Entire Overdischarge Process and Overdischarge-Induced Internal Short Circuit in Lithium-Ion Batteries. Sci Rep. 2016, 6 (1), 1-9.

    無法下載圖示 全文公開日期 2028/07/13 (校內網路)
    全文公開日期 2033/07/13 (校外網路)
    全文公開日期 2033/07/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE