簡易檢索 / 詳目顯示

研究生: Afifah Nur Ubaidillah
Afifah Nur Ubaidillah
論文名稱: 具高導離之彈性自修復固體電解質於鋰離子電池之應用
Elastic and Self-healing Solid Polymer Electrolyte with High Ion Conductivity for Lithium-Ion Batteries
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 黃 炳照
Bing-Joe Hwang
林昇佃
Shawn D Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 74
中文關鍵詞: 自修復固體聚合物電解質LiTFSI導離度
外文關鍵詞: self-healing solid polymer electrolyte, LiTFSI, ion conductivity
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract i 中文摘要 ii Content iii Table Captions v Figure Caption vi Chapter 1. Introduction 1 1.1. Background 1 1.2. Literature review 4 1.2.1. Lithium-Ion Batteries (LIBs) 4 1.2.2. Electrolyte 5 1.2.3. Solid Electrolyte 7 1.2.4. Polymer electrolyte 7 1.2.5. Strategies to overcome the problems in solid polymer electrolyte 13 1.2.6. Self-healing solid polymer electrolyte 16 1.2.7. Lithium salt selection 18 1.2.8. Monomers selection 19 Chapter 2. Experimental Section 22 2.1. Materials 22 2.2. Synthesis of random copolymer p(Sti-co-NMAm-co-BAn) 22 2.3. Synthesis of random copolymer p(SBMAi-co-NMAm-co-BAn) 23 2.4. Polymer characterization 24 2.5. Thermal behavior test of the polymer 25 2.6. Mechanical and self-healing test of the polymer 25 2.7. Fabrication of solid polymer electrolyte 26 2.8. Electrochemical measurements 26 Chapter 3. Results and Discussion 28 3.1. Characterization of polymer 28 3.2. Thermal behavior of polymer 35 3.3. Mechanical properties and self-healing properties of polymer 36 3.4. Electrochemical properties of self-healing solid polymer electrolyte 41 Chapter 4. Conclusions 47 References 48 Supporting Information 62 Upcoming Works 63

    (1) Zhao, Y.; Zhang, Y.; Sun, H.; Dong, X.; Cao, J.; Wang, L.; Xu, Y.; Ren, J.; Hwang, Y.; Son, I. H.; Huang, X.; Wang, Y.; Peng, H. A Self-Healing Aqueous Lithium-Ion Battery. Angew. Chemie - Int. Ed. 2016, 55 (46), 14384–14388. https://doi.org/10.1002/anie.201607951.
    (2) Hu, Z.; Li, G.; Wang, A.; Luo, J.; Liu, X. Recent Progress of Electrolyte Design for Lithium Metal Batteries. Batter. Supercaps 2020, 3 (4), 331–335. https://doi.org/10.1002/batt.201900191.
    (3) Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. New Concepts in Electrolytes. Chem. Rev. 2020, 120 (14), 6783–6819. https://doi.org/10.1021/acs.chemrev.9b00531.
    (4) Louis, H.; Magu, T. O. Polymer-Based Material for Lithium-Ion Batteries: Material Engineering, Structure, Device Performance and Challenges. Asian J. Nanosci. Mater. 2018, No. December.
    (5) Shan, Y.; Li, L.; Yang, X. Solid-State Polymer Electrolyte Solves the Transfer of Lithium Ions between the Solid–Solid Interface of the Electrode and the Electrolyte in Lithium–Sulfur and Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021. https://doi.org/10.1021/acsaem.1c00658.
    (6) Gonçalves, R.; Miranda, D.; Almeida, A. M.; Silva, M. M.; Meseguer-Dueñas, J. M.; Ribelles, J. L. G.; Lanceros-Méndez, S.; Costa, C. M. Solid Polymer Electrolytes Based on Lithium Bis(Trifluoromethanesulfonyl)Imide/Poly(Vinylidene Fluoride -Co-Hexafluoropropylene) for Safer Rechargeable Lithium-Ion Batteries. Sustain. Mater. Technol. 2019, 21. https://doi.org/10.1016/j.susmat.2019.e00104.
    (7) Das, S.; Ghosh, A. Charge Carrier Relaxation in Different Plasticized PEO/PVDF-HFP Blend Solid Polymer Electrolytes. J. Phys. Chem. B 2017, 121 (21), 5422–5432. https://doi.org/10.1021/acs.jpcb.7b02277.
    (8) Li, J.; Zhu, K.; Wang, J.; Yan, K.; Liu, J.; Yao, Z.; Xu, Y. Optimisation of Conductivity of PEO/PVDF-Based Solid Polymer Electrolytes in All-Solid-State Li-Ion Batteries. Mater. Technol. 2020, 00 (00), 1–8. https://doi.org/10.1080/10667857.2020.1827873.
    (9) Mei, X.; Zhao, W.; Ma, Q.; Yue, Z.; Dunya, H.; He, Q.; Chakrabarti, A.; McGarry, C.; Mandal, B. K. Solid Polymer Electrolytes Derived from Crosslinked Polystyrene Nanoparticles Covalently Functionalized with a Low Lattice Energy Lithium Salt Moiety. ChemEngineering 2020, 4 (3), 1–17. https://doi.org/10.3390/chemengineering4030044.
    (10) Zhang, Q.; Liu, K.; Ding, F.; Liu, X. Recent Advances in Solid Polymer Electrolytes for Lithium Batteries. Nano Res. 2017, 10 (12), 4139–4174. https://doi.org/10.1007/s12274-017-1763-4.
    (11) Zhao, J.; Yu, H.; Ben, L.; Zhan, Y.; Wu, Y.; Huang, X.; Zhou, Z. Inhibition of Lithium Dendrite Growth by Forming Rich Polyethylene Oxide-like Species in a Solid-Electrolyte Interphase in a Polysulfide/Carbonate Electrolyte. J. Mater. Chem. A 2018, 6 (35), 16818–16823. https://doi.org/10.1039/c8ta04600j.
    (12) Homann, G.; Stolz, L.; Nair, J.; Laskovic, I. C.; Winter, M.; Kasnatscheew, J. Poly(Ethylene Oxide)-Based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure. Sci. Rep. 2020, 10 (1), 2–10. https://doi.org/10.1038/s41598-020-61373-9.
    (13) Li, H.; Liu, W.; Yang, X.; Xiao, J.; Li, Y.; Sun, L.; Ren, X.; Zhang, P.; Mi, H. Fluoroethylene Carbonate-Li-Ion Enabling Composite Solid-State Electrolyte and Lithium Metal Interface Self-Healing for Dendrite-Free Lithium Deposition. Chem. Eng. J. 2021, 408 (October 2020), 127254. https://doi.org/10.1016/j.cej.2020.127254.
    (14) Rathika, R.; Padmaraj, O.; Suthanthiraraj, S. A. Electrical Conductivity and Dielectric Relaxation Behaviour of PEO/PVdF-Based Solid Polymer Blend Electrolytes for Zinc Battery Applications. Ionics (Kiel). 2018, 24 (1), 243–255. https://doi.org/10.1007/s11581-017-2175-x.
    (15) Zhu, L.; Li, J.; Jia, Y.; Zhu, P.; Jing, M.; Yao, S.; Shen, X.; Li, S.; Tu, F. Toward High Performance Solid-State Lithium-Ion Battery with a Promising PEO/PPC Blend Solid Polymer Electrolyte. Int. J. Energy Res. 2020, 44 (13), 10168–10178. https://doi.org/10.1002/er.5632.
    (16) Zhang, S.; Li, Z.; Guo, Y.; Cai, L.; Manikandan, P.; Zhao, K.; Li, Y.; Pol, V. G. Room-Temperature, High-Voltage Solid-State Lithium Battery with Composite Solid Polymer Electrolyte with in-Situ Thermal Safety Study. Chem. Eng. J. 2020, 400 (April), 125996. https://doi.org/10.1016/j.cej.2020.125996.
    (17) Jo, Y. H.; Zhou, B.; Jiang, K.; Li, S.; Zuo, C.; Gan, H.; He, D.; Zhou, X.; Xue, Z. Self-Healing and Shape-Memory Solid Polymer Electrolytes with High Mechanical Strength Facilitated by a Poly(Vinyl Alcohol) Matrix. Polym. Chem. 2019, 10 (48), 6561–6569. https://doi.org/10.1039/c9py01406c.
    (18) Wang, F.; Li, L.; Yang, X.; You, J.; Xu, Y.; Wang, H.; Ma, Y.; Gao, G. Influence of Additives in a PVDF-Based Solid Polymer Electrolyte on Conductivity and Li-Ion Battery Performance. Sustain. Energy Fuels 2018, 2 (2), 492–498. https://doi.org/10.1039/c7se00441a.
    (19) Horowitz, Y.; Lifshitz, M.; Greenbaum, A.; Feldman, Y.; Greenbaum, S.; Sokolov, A. P.; Golodnitsky, D. Review—Polymer/Ceramic Interface Barriers: The Fundamental Challenge for Advancing Composite Solid Electrolytes for Li-Ion Batteries. J. Electrochem. Soc. 2020, 167 (16), 160514. https://doi.org/10.1149/1945-7111/abcd12.
    (20) Zheng, Q.; Ma, L.; Khurana, R.; Archer, L. A.; Coates, G. W. Structure-Property Study of Cross-Linked Hydrocarbon/Poly(Ethylene Oxide) Electrolytes with Superior Conductivity and Dendrite Resistance. Chem. Sci. 2016, 7 (11), 6832–6838. https://doi.org/10.1039/c6sc01813k.
    (21) Cao, C.; Li, Y.; Feng, Y.; Peng, C.; Li, Z.; Feng, W. A Solid-State Single-Ion Polymer Electrolyte with Ultrahigh Ionic Conductivity for Dendrite-Free Lithium Metal Batteries. Energy Storage Mater. 2019, 19 (February), 401–407. https://doi.org/10.1016/j.ensm.2019.03.004.
    (22) Zhou, B.; Zuo, C.; Xiao, Z.; Zhou, X.; He, D.; Xie, X.; Xue, Z. Self-Healing Polymer Electrolytes Formed via Dual-Networks: A New Strategy for Flexible Lithium Metal Batteries. Chem. - A Eur. J. 2018, 24 (72), 19200–19207. https://doi.org/10.1002/chem.201803943.
    (23) Zhou, B.; Jo, Y. H.; Wang, R.; He, D.; Zhou, X.; Xie, X.; Xue, Z. Self-Healing Composite Polymer Electrolyte Formed via Supramolecular Networks for High-Performance Lithium-Ion Batteries. J. Mater. Chem. A 2019, 7 (17), 10354–10362. https://doi.org/10.1039/c9ta01214a.
    (24) Cao, X.; Zhang, P.; Guo, N.; Tong, Y.; Xu, Q.; Zhou, D.; Feng, Z. Self-Healing Solid Polymer Electrolyte Based on Imine Bonds for High Safety and Stable Lithium Metal Batteries. RSC Adv. 2021, 11 (5), 2985–2994. https://doi.org/10.1039/d0ra10035h.
    (25) Laysandra, L.; Chuang, C.-H.; Kobayashi, S.; Au-Duong, A.-N.; Cheng, Y.-H.; Li, Y.-T.; Mburu, M. M.; Isono, T.; Satoh, T.; Chiu, Y.-C. Design of Self-Cross-Linkable Poly( n -Butyl Acrylate)- Co -Poly[ N -(Hydroxymethyl)Acrylamide] Amphiphilic Copolymers toward Elastic and Self-Healing Properties . ACS Appl. Polym. Mater. 2020, 2 (12), 5432–5443. https://doi.org/10.1021/acsapm.0c00760.
    (26) Performance, S.; Jing, Z.; Xu, A.; Liang, Y.; Zhang, Z.; Yu, C.; Hong, P. Poly ( Vinyl Alcohol ) Double Network Hydrogels with Tunable Mechanics and High. Polymers (Basel). 2019.
    (27) Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles. J. Power Sources 2013, 226, 272–288. https://doi.org/10.1016/j.jpowsour.2012.10.060.
    (28) Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18 (5), 252–264. https://doi.org/10.1016/j.mattod.2014.10.040.
    (29) Goodenough, J. B.; Park, K. S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167–1176. https://doi.org/10.1021/ja3091438.
    (30) Ji, B.; Zhang, F.; Sheng, M.; Tong, X.; Tang, Y. A Novel and Generalized Lithium-Ion-Battery Configuration Utilizing Al Foil as Both Anode and Current Collector for Enhanced Energy Density. Adv. Mater. 2017, 29 (7), 1–7. https://doi.org/10.1002/adma.201604219.
    (31) Costa, C. M.; Lizundia, E.; Lanceros-Méndez, S. Polymers for Advanced Lithium-Ion Batteries: State of the Art and Future Needs on Polymers for the Different Battery Components. Prog. Energy Combust. Sci. 2020, 79, 100846. https://doi.org/10.1016/j.pecs.2020.100846.
    (32) Li, W.; Pang, Y.; Liu, J.; Liu, G.; Wang, Y.; Xia, Y. A PEO-Based Gel Polymer Electrolyte for Lithium Ion Batteries. RSC Adv. 2017, 7 (38), 23494–23501. https://doi.org/10.1039/c7ra02603j.
    (33) Lv, P.; Li, Y.; Wu, Y.; Liu, G.; Liu, H.; Li, S.; Tang, C.; Mei, J.; Li, Y. Robust Succinonitrile-Based Gel Polymer Electrolyte for Lithium-Ion Batteries Withstanding Mechanical Folding and High Temperature. ACS Appl. Mater. Interfaces 2018, 10 (30), 25384–25392. https://doi.org/10.1021/acsami.8b06800.
    (34) Lin, D.; Liu, W.; Liu, Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High Ionic Conductivity of Composite Solid Polymer Electrolyte via in Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(Ethylene Oxide). Nano Lett. 2016, 16 (1), 459–465. https://doi.org/10.1021/acs.nanolett.5b04117.
    (35) Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An Anion-Immobilized Composite Electrolyte for Dendrite-Free Lithium Metal Anodes. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (42), 11069–11074. https://doi.org/10.1073/pnas.1708489114.
    (36) Fu, K.; Gong, Y.; Dai, J.; Gong, A.; Han, X.; Yao, Y.; Wang, C.; Wang, Y.; Chen, Y.; Yan, C.; Li, Y.; Wachsman, E. D.; Hu, L. Flexible, Solid-State, Ion-Conducting Membrane with 3D Garnet Nanofiber Networks for Lithium Batteries. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (26), 7094–7099. https://doi.org/10.1073/pnas.1600422113.
    (37) Wang, H.; Sheng, L.; Yasin, G.; Wang, L.; Xu, H.; He, X. Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries. Energy Storage Mater. 2020, 33 (July), 188–215. https://doi.org/10.1016/j.ensm.2020.08.014.
    (38) Ye, F.; Liao, K.; Ran, R.; Shao, Z. Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review. Energy and Fuels 2020, 34 (8), 9189–9207. https://doi.org/10.1021/acs.energyfuels.0c02111.
    (39) Ma, F.; Zhang, Z.; Yan, W.; Ma, X.; Sun, D.; Jin, Y.; Chen, X.; He, K. Solid Polymer Electrolyte Based on Polymerized Ionic Liquid for High Performance All-Solid-State Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7 (5), 4675–4683. https://doi.org/10.1021/acssuschemeng.8b04076.
    (40) Irfan, M.; Atif, M.; Yang, Z.; Zhang, W. Recent Advances in High Performance Conducting Solid Polymer Electrolytes for Lithium-Ion Batteries. J. Power Sources 2021, 486 (September 2020), 229378. https://doi.org/10.1016/j.jpowsour.2020.229378.
    (41) Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A Review of Polymer Electrolytes: Fundamental, Approaches and Applications. Ionics (Kiel). 2016, 22 (8), 1259–1279. https://doi.org/10.1007/s11581-016-1756-4.
    (42) Zhang, B.; Zhang, Y.; Zhang, N.; Liu, J.; Cong, L.; Liu, J.; Sun, L.; Mauger, A.; Julien, C. M.; Xie, H.; Pan, X. Synthesis and Interface Stability of Polystyrene-Poly(Ethylene Glycol)-Polystyrene Triblock Copolymer as Solid-State Electrolyte for Lithium-Metal Batteries. J. Power Sources 2019, 428 (May), 93–104. https://doi.org/10.1016/j.jpowsour.2019.04.033.
    (43) Lee, T. K.; Zaini, N. F. M.; Mobarak, N. N.; Hassan, N. H.; Noor, S. A. M.; Mamat, S.; Loh, K. S.; KuBulat, K. H.; Su’ait, M. S.; Ahmad, A. PEO Based Polymer Electrolyte Comprised of Epoxidized Natural Rubber Material (ENR50) for Li-Ion Polymer Battery Application. Electrochim. Acta 2019, 316, 283–291. https://doi.org/10.1016/j.electacta.2019.05.143.
    (44) Zhao, Y.; Wang, L.; Zhou, Y.; Liang, Z.; Tavajohi, N.; Li, B.; Li, T. Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries. Adv. Sci. 2021, 8 (7), 1–22. https://doi.org/10.1002/advs.202003675.
    (45) Wang, C.; Li, R. J.; Chen, P.; Fu, Y.; Ma, X. Y.; Shen, T.; Zhou, B.; Chen, K.; Fu, J. J.; Bao, X.; Yan, W.; Yang, Y. Highly Stretchable, Non-Flammable and Notch-Insensitive Intrinsic Self-Healing Solid-State Polymer Electrolyte for Stable and Safe Flexible Lithium Batteries. J. Mater. Chem. A 2021, 9 (8), 4758–4769. https://doi.org/10.1039/d0ta10745j.
    (46) Liu, H.; Cheng, X.-B.; Jin, Z.; Zhang, R.; Wang, G.; Chen, L.-Q.; Liu, Q.-B.; Huang, J.-Q.; Zhang, Q. Recent Advances in Understanding Dendrite Growth on Alkali Metal Anodes. EnergyChem 2019, 1 (1), 100003. https://doi.org/10.1016/j.enchem.2019.100003.
    (47) Zhou, B.; He, D.; Hu, J.; Ye, Y.; Peng, H.; Zhou, X.; Xie, X.; Xue, Z. A Flexible, Self-Healing and Highly Stretchable Polymer Electrolyte: Via Quadruple Hydrogen Bonding for Lithium-Ion Batteries. J. Mater. Chem. A 2018, 6 (25), 11725–11733. https://doi.org/10.1039/c8ta01907j.
    (48) Li, S.; Zuo, C.; Zhang, Y.; Wang, J.; Gan, H.; Li, S.; Yu, L.; Zhou, B.; Xue, Z. Covalently Cross-Linked Polymer Stabilized Electrolytes with Self-Healing Performance: Via Boronic Ester Bonds. Polym. Chem. 2020, 11 (36), 5893–5902. https://doi.org/10.1039/d0py00728e.
    (49) Hung, C. C.; Wu, H. C.; Chiu, Y. C.; Tung, S. H.; Chen, W. C. Crosslinkable High Dielectric Constant Polymer Dielectrics for Low Voltage Organic Field-Effect Transistor Memory Devices. J. Polym. Sci. Part A Polym. Chem. 2016, 54 (19), 3224–3236. https://doi.org/10.1002/pola.28209.
    (50) Yang, J.; Xu, Z.; Wang, J.; Gai, L.; Ji, X.; Jiang, H.; Liu, L. Antifreezing Zwitterionic Hydrogel Electrolyte with High Conductivity of 12.6 MS Cm−1 at −40 °C through Hydrated Lithium Ion Hopping Migration. Adv. Funct. Mater. 2021. https://doi.org/10.1002/adfm.202009438.
    (51) Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5 (9), 2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009.
    (52) Ben youcef, H.; Garcia-Calvo, O.; Lago, N.; Devaraj, S.; Armand, M. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries. Electrochim. Acta 2016, 220, 587–594. https://doi.org/10.1016/j.electacta.2016.10.122.
    (53) Lu, F.; Li, G.; Yu, Y.; Gao, X.; Zheng, L.; Chen, Z. Zwitterionic Impetus on Single Lithium-Ion Conduction in Solid Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Chem. Eng. J. 2020, 384 (October 2019), 123237. https://doi.org/10.1016/j.cej.2019.123237.
    (54) Ma, C.; Feng, Y.; Xing, F.; Zhou, L.; Yang, Y.; Xia, Q.; Zhou, L.; Zhang, L.; Chen, L.; Ivey, D. G.; Sadoway, D. R.; Wei, W. A Borate Decorated Anion-Immobilized Solid Polymer Electrolyte for Dendrite-Free, Long-Life Li Metal Batteries. J. Mater. Chem. A 2019, 7 (34), 19970–19976. https://doi.org/10.1039/c9ta07551h.
    (55) Gan, H.; Zhang, Y.; Li, S.; Yu, L.; Wang, J.; Xue, Z. Self-Healing Single-Ion Conducting Polymer Electrolyte Formed via Supramolecular Networks for Lithium Metal Batteries. ACS Appl. Energy Mater. 2021, 4 (1), 482–491. https://doi.org/10.1021/acsaem.0c02384.
    (56) Shanmukaraj, D.; Ranque, P.; Ben Youcef, H.; Rojo, T.; Poizot, P.; Grugeon, S.; Laruelle, S.; Guyomard, D. Review—Towards Efficient Energy Storage Materials: Lithium Intercalation/Organic Electrodes to Polymer Electrolytes—A Road Map (Tribute to Michel Armand). J. Electrochem. Soc. 2020, 167 (7), 070530. https://doi.org/10.1149/1945-7111/ab787a.
    (57) Olmedo-Martínez, J. L.; Meabe, L.; Basterretxea, A.; Mecerreyes, D.; Müller, A. J. Effect of Chemical Structure and Salt Concentration on the Crystallization and Ionic Conductivity of Aliphatic Polyethers. Polymers (Basel). 2019, 11 (3). https://doi.org/10.3390/polym11030452.
    (58) Younesi, R.; Veith, G. M.; Johansson, P.; Edström, K.; Vegge, T. Lithium Salts for Advanced Lithium Batteries: Li-Metal, Li-O2, and Li-S. Energy Environ. Sci. 2015, 8 (7), 1905–1922. https://doi.org/10.1039/c5ee01215e.
    (59) Arya, A.; Sharma, A. L. A Glimpse on All-Solid-State Li-Ion Battery (ASSLIB) Performance Based on Novel Solid Polymer Electrolytes: A Topical Review. J. Mater. Sci. 2020, 55 (15), 6242–6304. https://doi.org/10.1007/s10853-020-04434-8.
    (60) Laysandra, L.; Chuang, C. H.; Kobayashi, S.; Au-Duong, A. N.; Cheng, Y. H.; Li, Y. T.; Mburu, M. M.; Isono, T.; Satoh, T.; Chiu, Y. C. Design of Self-Cross-Linkable Poly(n-Butyl Acrylate)-Co-Poly[ N-(Hydroxymethyl)Acrylamide] Amphiphilic Copolymers toward Elastic and Self-Healing Properties. ACS Appl. Polym. Mater. 2020, 2 (12), 5432–5443. https://doi.org/10.1021/acsapm.0c00760.
    (61) Ding, H.; Liang, X.; Zhang, X. N.; Wu, Z. L.; Li, Z.; Sun, G. Tough Supramolecular Hydrogels with Excellent Self-Recovery Behavior Mediated by Metal-Coordination Interaction. Polymer (Guildf). 2019, 171 (March), 201–210. https://doi.org/10.1016/j.polymer.2019.03.061.
    (62) Meng, B.; Deng, J.; Liu, Q.; Wu, Z.; Yang, W. Transparent and Ductile Poly(Lactic Acid)/Poly(Butyl Acrylate) (PBA) Blends: Structure and Properties. Eur. Polym. J. 2012, 48 (1), 127–135. https://doi.org/10.1016/j.eurpolymj.2011.10.009.
    (63) Wu, X.; Liu, Y.; Yang, Q.; Wang, S.; Hu, G.; Xiong, C. Properties of Gel Polymer Electrolytes Based on Poly(Butyl Acrylate) Semi-Interpenetrating Polymeric Networks toward Li-Ion Batteries. Ionics (Kiel). 2017, 23 (9), 2319–2325. https://doi.org/10.1007/s11581-017-2083-0.
    (64) Zhou, G.; Lin, X.; Liu, J.; Yu, J.; Wu, J.; Law, H. M.; Wang, Z.; Ciucci, F. In Situ Formation of Poly(Butyl Acrylate)-Based Non-Flammable Elastic Quasi-Solid Electrolyte for Dendrite-Free Flexible Lithium Metal Batteries with Long Cycle Life for Wearable Devices. Energy Storage Mater. 2021, 34 (October 2020), 629–639. https://doi.org/10.1016/j.ensm.2020.10.012.
    (65) Digar, M.; Hung, S. L.; Wen, T. C. Blending Poly(Methyl Methacrylate) and Poly(Styrene-Co-Acrylonitrile) as Composite Polymer Electrolyte. J. Appl. Polym. Sci. 2001, 80 (8), 1319–1328. https://doi.org/10.1002/app.1219.
    (66) Benoit, D.; Grimaldi, S.; Robin, S.; Finet, J. P.; Tordo, P.; Gnanou, Y. Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and n-Butyl Acrylate in the Presence of an Acyclic β-Phosphonylated Nitroxide. J. Am. Chem. Soc. 2000, 122 (25), 5929–5939. https://doi.org/10.1021/ja991735a.
    (67) Liu, H.; Wang, X.; Kuang, C.; Li, L.; Zhai, Y. Polyvinylidene Fluoride/Polystyrene Hybrid Fibers with High Ionic Conductivity and Enhanced Mechanical Strength as Lithium-Ion Battery Separators. J. Solid State Electrochem. 2018, 22 (11), 3579–3587. https://doi.org/10.1007/s10008-018-4068-y.
    (68) Leng, K.; Li, G.; Guo, J.; Zhang, X.; Wang, A.; Liu, X.; Luo, J. A Safe Polyzwitterionic Hydrogel Electrolyte for Long-Life Quasi-Solid State Zinc Metal Batteries. Adv. Funct. Mater. 2020, 30 (23). https://doi.org/10.1002/adfm.202001317.
    (69) Valdebenito, A.; Encinas, M. V. Effect of Solvent on the Free Radical Polymerization of N,N-Dimethylacrylamide. Polym. Int. 2010, 59 (9), 1246–1251. https://doi.org/10.1002/pi.2856.
    (70) De Sterck, B.; Vaneerdeweg, R.; Du Prez, F.; Waroquier, M.; Van Speybroeck, V. Solvent Effects on Free Radical Polymerization Reactions: The Influence of Water on the Propagation Rate of Acrylamide and Methacrylamide. Macromolecules 2010, 43 (2), 827–836. https://doi.org/10.1021/ma9018747.
    (71) Coote, M. L.; Davis, T. P. Solvent Effects on Free Radical Polymerization, Second Edi.; ChemTec Publishing, 2014; Vol. 1. https://doi.org/10.1016/B978-1-895198-64-5.50021-0.
    (72) Fang, J.; Xuan, Y.; Li, Q. Preparation of Polystyrene Spheres in Different Particle Sizes and Assembly of the PS Colloidal Crystals. Sci. China Technol. Sci. 2010, 53 (11), 3088–3093. https://doi.org/10.1007/s11431-010-4110-5.
    (73) Zhang, H.; Guo, G.; Liu, L.; Tao, F.; Ren, J.; Zheng, L. Durable, Water-Cleanable, Superhydrophilic Coatings for Oil/Water Separation under Harsh Conditions. J. Saudi Chem. Soc. 2019, 23 (8), 1007–1015. https://doi.org/10.1016/j.jscs.2019.05.006.
    (74) Liu, Q.; Patel, A. A.; Liu, L. Superhydrophilic and Underwater Superoleophobic Poly(Sulfobetaine Methacrylate)-Grafted Glass Fiber Filters for Oil-Water Separation. ACS Appl. Mater. Interfaces 2014, 6 (12), 8996–9003. https://doi.org/10.1021/am502302g.
    (75) Liang, B.; Zhang, G.; Zhong, Z.; Huang, Y.; Su, Z. Superhydrophilic Anti-Icing Coatings Based on Polyzwitterion Brushes. Langmuir 2019, 35 (5), 1294–1301. https://doi.org/10.1021/acs.langmuir.8b01009.
    (76) Wu, T.; Beyer, F. L.; Brown, R. H.; Moore, R. B.; Long, T. E. Influence of Zwitterions on Thermomechanical Properties and Morphology of Acrylic Copolymers: Implications for Electroactive Applications. Macromolecules 2011, 44 (20), 8056–8063. https://doi.org/10.1021/ma201211j.
    (77) Wang, C.; Wu, H.; Chen, Z.; Mcdowell, M. T.; Cui, Y.; Bao, Z. Self-Healing Chemistry Enables the Stable Operation of Silicon Microparticle Anodes for High-Energy Lithium-Ion Batteries. Nat. Chem. 2013, 5 (12), 1042–1048. https://doi.org/10.1038/nchem.1802.
    (78) Wei, Z.; Ren, Y.; Wang, M.; He, J.; Huo, W.; Tang, H. Improving the Conductivity of Solid Polymer Electrolyte by Grain Reforming. Nanoscale Res. Lett. 2020, 15 (1). https://doi.org/10.1186/s11671-020-03355-4.
    (79) Meabe, L.; Huynh, T. V.; Mantione, D.; Porcarelli, L.; Li, C.; O’Dell, L. A.; Sardon, H.; Armand, M.; Forsyth, M.; Mecerreyes, D. UV-Cross-Linked Poly(Ethylene Oxide Carbonate) as Free Standing Solid Polymer Electrolyte for Lithium Batteries. Electrochim. Acta 2019, 302, 414–421. https://doi.org/10.1016/j.electacta.2019.02.058.
    (80) Cong, B.; Song, Y.; Ren, N.; Xie, G.; Tao, C.; Huang, Y.; Xu, G.; Bao, J. Polyethylene Glycol-Based Waterborne Polyurethane as Solid Polymer Electrolyte for All-Solid-State Lithium Ion Batteries. Mater. Des. 2018, 142, 221–228. https://doi.org/10.1016/j.matdes.2018.01.039.
    (81) Whba, R.; Su’ait, M. S.; TianKhoon, L.; Ibrahim, S.; Mohamed, N. S.; Ahmad, A. In-Situ UV Cured Acrylonitrile Grafted Epoxidized Natural Rubber (ACN-g-ENR) – LiTFSI Solid Polymer Electrolytes for Lithium-Ion Rechargeable Batteries. React. Funct. Polym. 2021, 164 (April). https://doi.org/10.1016/j.reactfunctpolym.2021.104938.
    (82) Jalbert, P.-M.; Commarieu, B.; Daigle, J.-C.; Claverie, J. P.; Zaghib, K. A 3D Network Based on Poly( ε -Caprolactone) Macromonomers as Polymer Electrolyte for Solid State Lithium Metal Batteries . J. Electrochem. Soc. 2020, 167 (8), 080527. https://doi.org/10.1149/1945-7111/ab8de0.
    (83) Mendes-Felipe, C.; Barbosa, J. C.; Gonçalves, R.; Miranda, D.; Costa, C. M.; Vilas-Vilela, J. L.; Lanceros-Mendez, S. Lithium Bis(Trifluoromethanesulfonyl)Imide Blended in Polyurethane Acrylate Photocurable Solid Polymer Electrolytes for Lithium-Ion Batteries. J. Energy Chem. 2021, 62, 485–496. https://doi.org/10.1016/j.jechem.2021.01.030.

    無法下載圖示 全文公開日期 2026/08/02 (校內網路)
    全文公開日期 2026/08/02 (校外網路)
    全文公開日期 2026/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE