簡易檢索 / 詳目顯示

研究生: 方偉凱
Wei-kai Fang
論文名稱: 無光罩微影系統之解析度研究
Resolution Improvement of Maskless Lithography System
指導教授: 鄭正元
Jeng-Ywan Jeng
張復瑜
Fuh-Yu Chang
口試委員: 林其禹
Chyi-Yeu Lin
汪家昌
Jia-Chang Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 128
中文關鍵詞: 無光罩光學微影數位微反射鏡元件偏振
外文關鍵詞: Maskless, photolithography, DMD, Polarization
相關次數: 點閱:290下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前主流半導體製程仍採用實體光罩進行黃光微影,但實體光罩有易污染、成本高以及光罩更換與對準曝光等問題。為解決這些問題,本實驗室開發出特殊的無光罩顯微鏡微影系統,其特點為整合了顯微鏡與投影機這兩個不同的光學單元。此系統僅需利用一動態光罩即可產生隨時間連續變化的不同光罩圖樣,不但解決了傳統石英光罩的更換對位問題,更可節省製作3D複雜元件所需的多道光罩之製作成本。不過在解析度方面,本系統目前仍與實體光罩曝光有段差距。
為了提升本系統的微影解析度,本研究使用光學模擬軟體分析此一無光罩顯微鏡微影系統,藉由投影機個別元件的實際光學性質量測以及雙凸顯微鏡的設計,以軟體進行像差分析與系統架構對接之最佳化設計,並據此改良無光罩顯微鏡微影系統。最後,根據模擬建構完成之系統進行解析度的實驗驗證,同時導入偏振之概念來改善微影影像的對比。
實驗結果顯示,經修正之曝光系統其解析度可以由原先的3.76 μm推進至1.76 μm。同時,加入偏振片的微影製程明顯降低光干涉的影響,有效改善線寬的線寬輪廓與線寬間距的比例。


Photolithography is the preferred method of micro-patterning in both electronics manufacturing and micro-electromechanical systems (MEMS). The process normally requires a customized mask, which is expensive, time consuming, and flexibility limited. In order to solve these problems, we have developed a special maskless lithography system (MLS). This system is mainly composed of a microscope and a projector, where the projector projects images into the microscope. The DMD (Digital Micro-mirror Device) of the projector is used to generate the dynamic mask pattern in real-time. In other words, DMD is used to produce different images to be projected directly on the wafer. But unfortunately, this system is still limited in resolution.
In order to enhance resolution, this study introduces optical software to analyze MLS. With the optical measurements of the components in the projector and the design of a biconvex microscope, MLS is optically modeled, and then proceeds with aberration analyses and combination simulation. Based on these analyses, the setup of MLS is altered to obtain a better performance. Meanwhile, the minimum line-width is tested with the optimized MLS. And a linear polarizer is incorporated to the lithography process to improve contrast of the image.
The results of the experiments showed that resolution of the altered MLS can be enhanced from 3.76 μm to 1.76 μm. The results also confirmed that linear polarizer evidently lowers light interference, thus improves the profile of the line-width and maintains the line-width/space scale.

誌謝 I 中文摘要 II 英文摘要 III 目錄 IV 表目錄 IX 圖目錄 X 符號表 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究背景及目的 2 1.3 論文架構 3 第二章 微影曝光之文獻回顧 4 2.1 傳統微影系統 4 2.2 無光罩微影系統 7 2.2.1 DMD之原理 8 2.3 無光罩顯微鏡微影系統 11 2.4 投影機光學 11 2.4.1 成像光學 12 2.4.2 非成像光學 17 2.4.3 照明系統模擬 18 2.4.4 DMD光路設計 20 2.4.5 成像系統設計 23 2.5 微影之偏振技術 25 2.5.1 微影之偏振原理 25 2.5.2 微影之偏振照明設計 27 2.5.3 微影之偏振照明應用 28 第三章 實驗規劃與元件架構分析 30 3.1 實驗規劃 30 3.2 無光罩顯微鏡微影系統架構 32 3.2.1 投影機工作原理 33 3.2.2 顯微鏡工作原理 34 3.3 投影機元件分解與光學性質 35 3.3.1 燈源 36 3.3.2 色輪 37 3.3.3 積分柱 38 3.3.4 照明系統鏡組 39 3.3.5 DMD 42 3.3.6 成像鏡組 43 3.4 顯微鏡 45 3.5 線偏振片 46 3.6 實驗前置作業 47 3.6.1 試片準備 48 第四章 無光罩顯微鏡微影系統模擬與分析 54 4.1 光學軟體介紹 54 4.1.1 OSLO 54 4.1.2 TracePro 55 4.2 成像光學模擬與分析 56 4.2.1 投影機 56 4.2.2 顯微鏡建立 63 4.2.3 無光罩顯微鏡微影系統 67 4.2.4 無光罩顯微鏡微影系統加偏振片 68 4.3 非成像光學模擬與分析 69 4.3.1 投影機照度分析 69 4.3.2 無光罩顯微鏡微影系統對接分析 73 4.3.3 偏振片模擬 78 4.模擬結果整理 83 第五章 無光罩顯微鏡微影實驗結果與討論 84 5.1 系統架設與均勻度測試 85 5.2 系統之解析度測試 85 5.2.1 線偏振片之架設 87 5.2.2 5X物鏡曝光 88 5.2.3 10X物鏡曝光 91 5.2.4 20X物鏡曝光 99 5.3 SEM圖比較 101 第六章 總結與未來展望 105 6.1 總結 105 6.2 未來展望 106 參考文獻 107

1.施敏,梅凱瑞,林鴻志,半導體製程概論,交大出版社,第90~93頁。 (2005)
2.Y. A. Shroff, “Design, fabrication, and optical analysis of nanomirrors for maskless lithography,” Ph.D. Thesis, Department of EECS, University of California at Berkeley (2003)
3.Y. Chen, “Dynamics, control and fabrication of micromirrors for maskless lithography,” Ph.D. Thesis, Department of EECS, University of California at Berkeley (2004)
4.K. F. Chan, Z. Feng, R. Yang and W. Mei, “High resolution maskless lithography by the integration of microoptics and point array technique,” Proc. SPIE, v. 4985 (2003)
5.Jian Wang, Lixin Zhao, Wei Yan, Wnxiang Xu, Song Hu, Xiaoping Tang, Zhaozhi Wang, Shurong Wang and Zhengrong Zhang, “Research on digital gray-tone projection lithography,” Proc. SPIE, v. 7284 (2009)
6.林智清,高功率發光二極體照明器於數位光源處理式投影機之效能,國立台灣科技大學電子工程系,碩士學位論文。 (2004)
7.鄭子威,運用動態光罩技術製作微透鏡陣列及電鑄模具之研究,國立台灣科技大學機械工程系,碩士學位論文。(2004)
8.蔡敏隆,運用DMD無光罩微影技術於薄膜電晶體製程之研究,國立台灣科技大學機械工程系,碩士學位論文。(2007)
9.藍國瑋,非接觸浸潤式無光罩微影系統研發,國立台灣科技大學機械工程系,碩士學位論文。 (2009)
10.陳時偉,數位光源處理投影系統之光學設計與光機模擬,元智大學電機工程研究所,碩士學位論文。 (2002)
11.Narkis Shatz, John Bortz and Mark Peterson, “Optimal design of light-engine optics for a video projector,” Proc. SPIE, v.5185, pp.47-155 (2004)
12.Rykowski R. and Forkner J.F., “Matching illumination system with projection optics” Proc. SPIE, v.2407, pp.48-52 (1995)
13.Chong-Min Chang and Han-Ping D. Shieh, “Design of illumination and projection optics for projectors with single digital micromirror devices,” Applied Optics, v.39, pp.3202-3208 (2000)
14.廖國裕,三百萬畫素自動對焦手機鏡頭設計,國立虎尾科技大學,光電與材料科技研究所,碩士論文。 (2007)
15.林煒晟,軟式變焦鏡頭設計與製作,國立台灣科技大學機械工程系,碩士學位論文。 (2006)
16.Donald C O’Shea, Thomas J. Suleski, Alan D. Kathman and Dennis W. Prather, Diffractive optics, SPIE Press (2004)
17.許紘齊,精巧型矽基投影機照明系統之研究,長庚大學,光電研究所,碩士學位論文。 (2004)
18.Henning Rehn, “Elliptical reflector: efficiency gain by defocusing,” Proc. SPIE, v.6670 (2007)
19.Xutao Sun, Zhenrong Zheng, Xu Liu and Peifu Gu, “Etendue analysis and measurement of light source with elliptical reflector,” Displays, v.27, pp. 56-61 (2006)
20.William J. Cassarly and Michael J. Hayford, “Illumination optimization: the revolution has begun,” Proc. SPIE, v.4832, pp.258-269 (2002)
21.Tuan-Yu Hung and Ching-Shen Su, “Double relay lens for a microscopic observation system,” Opt. Eng., v. 31 (1992)
22.陳立人,DLP前系統之光路設計,國立中央大學,光電科學與工程學系,碩士學位論文。 (2008)
23.Youri Meuret and Patrick De Visschere, “Contrast-improving methods for Digital Micromirror Device projectors,” Opt. Eng., v.42, p.840 (2003)
24.Peter Janssens and Koen Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE, v.7232 (2009)
25.Larry J. Hornbeck, “Digital light processingTM for high-brightness, high-resolution applications,” Proc. SPIE, v.3013, pp.27-40 (1997)
26.Edward H. Stupp, Matthew S. Brennesholtz, Projection Display, John Wiley & Sons Ltd (1999)
27.周清文,雙燈投影裝置運用於遠距教學之研究,國立中央大學,光電科學研究所,碩士學位論文。(2006)
28.Toru Fujii, Naonori Kita and Yasushi Mizuno, “On board polarization measuring instrument for high NA excimer scanner,” Proc. SPIE, v.5752, p.846 (2005)
29.Hisashi Nishinaga, Noriaki Tokuda, Soichi Owa, Shigeru Hirukawa, Osamu Tanitsu, Takehito Kudo and Hirohisa Tanaka, “Development of polarized-light illuminator and its impact,” Proc. SPIE, v.5754, p.669 (2004)
30.Hyoung-Soon Yune, Yeong-Bae Ahn, Dong-jin Lee, James Moon, Byung-Ho Nam and Dong-gyu Yim, “Application of full-chip optical proximity correction for sub-60nm memory device in polarized illumination,” Proc. SPIE, v.6520 (2007)
31.Takashi Sato, Ayako Endo, Akiko Mimotogi, Shoji Mimotogi, Kazuya Sato and Satoshi Tanaka, “Impact of polarization on an attenuated phase shift mask with ArF hyper-numerical aperture lithography,” J. Microlith., Microfab., Microsyst., v.5 (2006)
32.Qiaolin Zhang, Hua Song, Brian Ward, James Shiely and Kevin Lucas, “Rigorous vectorial modeling for polarized illumination and projection pupil in OPC, Proc. SPIE, v.7028, pp.702-813 (2008)
33.Kouichirou Tsujita and Isao Mita, “Improvement of deteriorated resolution caused by polarization phenomenon with TARC process,” Proc. SPIE, v.5377, p.80 (2004)
34.Zhou Yuan and Yanqiu Li, “Impact of source polarization on the imaging of line and space features at 45nm half pitch node,” Proc. SPIE, v.6827 (2007)
35.Moh Lung Ling, Gek Soon Chuaa, Qunying Linb, Cho Jui Tay and Chenggen Quan, “Customized illumination shapes for 193nm immersion lithography,” Proc. SPIE, v.6924 (2008)
36.Hans Jasper, Theo Modderman, Mark van de Kerkhof, Christian Wagner, Jan Mulkens, Wim de Boeij and Eelco van Setten, “Immersion lithography with an ultra-high NA in-line catadioptric lens and a high transmission flexible polarization illumination system,” Proc. SPIE, v.6154 (2006)
37.Tomoyuki Matsuyama and Toshiharu Nakashima, “Study of high NA imaging with polarized illumination,” Proc. SPIE, v.5754 (2004)
38.Bruce W. Smith, Lena V. Zavyalova and Andrew Estroff, “Benefiting from polarization – effects on high-NA imaging,” Proc. SPIE, v.5377, p.68 (2004)
39.毛文煒,光學工程基礎,清華大學出版社,第137~141頁。 (2007)
40.鄭竹明,改善非對稱投影之方法與系統,中華民國專利#503341。 (2002)
41.陳美玲,陳時偉,陳昭舜,龍泓成,許俊發,廖政順,投影裝置及其照明系統,中華民國專利#M337114。 (2008)
42.羅翊戩,數位相機之鏡頭設計,國立中央大學,光電科學研究所,碩士學位論文。 (2006)
43.Texas Instruments, http://www.ti.com/
44.Nikon, http://www.nikon.com/
45.Edmunds,http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?productid=2342
46.Eugene. Hecht, “Optics,” Addison Wesley (2002)
47.廖國裕,三百萬畫素自動對焦手機鏡頭設計,國立虎尾科技大學,光電與材料科技研究所,碩士學位論文。 (2007)
48.許阿娟,相位、幾何相位與光束分析在光學設計與測試的應用及探討,國立成功大學,物理研究所,博士學位論文。 (2002)
49.邵穗鵬,光學透鏡系統實例設計與評估,國立中央大學,機械工程研究所,碩士學位論文。 (2004)
50.楊建人,光學原理,徐氏基金會。 (1984)
51.伍秀菁,汪若文,林美吟,光學元件精密製造與檢測,國家實驗研究院儀器科技研究中心。 (2007)
52.葉玉堂,饒建珍,肖峻,幾何光學,五南圖書出版股份有限公司。 (2008)
53.Radiant Imaging, http://www.radiantimaging.com/
54.Ronald F. Rykowski and C. Benjamin Wooley, “Source Modeling for Illumination Design,” Proc. SPIE, v.3130 (1997)
55.李佳惠,光學投影系統之光路設計與模擬,逢甲大學,半導體與光電產業研發所,碩士學位論文。(2006)
56.吳漢雄,工程光學與實習,俊傑書局股份有限公司,第251~252頁。 (2002)
57.王文欽,全波段多光路檢測系統,逢甲大學,資訊電機工程所,碩士學位論文。 (2007)

QR CODE