簡易檢索 / 詳目顯示

研究生: 戴采綸
Tsai-lun Dai
論文名稱: 應用光彈補償法於射出壓縮成形複合式菱鏡對殘留應力及光學特性研究
Research of Injection Compression Molding and Photoelasticity Compensator Method on Residual Stress and Optical Quality of Hybrid Prism
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 楊申語
none
黃忠偉
none
黃育熙
none
黃國政
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 261
中文關鍵詞: 次波長結構導光菱鏡光彈應力分析圓偏振光射出壓縮成形
外文關鍵詞: Light-guide prims, Photoelastic stress analysis, Circular polarization, Injection compression molding, sub-wavelength structure
相關次數: 點閱:300下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計一套應用圓偏振光原理之光彈應力影像分析系統(Photoelastic Stress by Image Analysis System, PSIAS),包含兩種光彈應力校正與分析方法,第一種方法為搭配光延遲量補償器(LWC),研發一套光彈應力補償法(Photoelastic Stress by Image Analysis System with LWC Compensator Method, PSIAS_LWC_md),可應用於人工檢測不等厚度菱鏡之殘留應力,第二種方法為改進先前發展之光彈應力分析軟體(Photoelastic Stress Analysis Software, PSAS),可半自動檢測殘留應力。驗證方面先以校正片Psm-1 disk分析比較兩種應力檢測方法,其PSIAS_LWC_md比較於文獻的應力光學係數校正法(Stress-Optical Coefficients Calibration Method, C_md)的應力檢測結果,平均應力誤差小於0.140MPa,相當於4.6%;以PSAS比較於C_md其平均應力誤差為0.312MPa,相當於10.3%。再以射出成形製作壓克力測試片(PMMA disk),可求得實驗材料之應力光學係數(Stress-Optical Coefficients, C)。另本研究應用射出成形以及含熱退火射出壓縮成形(Injection Compression Molding with Annealing, ICM-ANL)製程比較階梯狀導光菱鏡殘留應力、成形性以及光學品質影響。在比較ICM-ANL於IM 製程,因殘留應力釋放,故以拉曼峰值強度解釋菱鏡在充填方向之凝固層、剪切層與核心層之分子配向情形已經明顯降低,並以PSIAS_LWC_md檢測菱鏡殘留應力可降低24.5%,可得到最小平均平面度為11m,相對為改善74%,而光照度最大提升約4%。最後應用於含次波長結構之複合式菱鏡製作,先以陽極氧化鋁製程製作六吋次波長微米結構(6” Alumina Sub-Wavelength Structure, 6”Al_SWS),再以電鑄製程翻模為6”Ni_SWS,其孔洞直徑約93nm、平均高度360nm,但因本研究之鎳模仁奈米柱生長並非完全垂直,使得複合式菱鏡之次波長結構不易脫模,容易破壞次波長結構。本研究結果已驗證所研發之光彈應力補償法(PSIAS_LWC_md)及含熱退火射壓成形(ICM-ANL)可應用於導光菱鏡之應力分析與製作,未來可應用於不等厚度複合式光學元件之殘留應力檢測,以提升光學品質。


    This study aims to design a Photoelastic Stress Image Analysis System (PSIAS) based on circular polarization theory, which includes two calibration and analysis methods of (I) PSIAS combined with a LWC Compensator Method or named as PSIAS_LWC_md and (II) Photoelastic Stress Analysis Software (PSAS) modified from previous study. Experimental verification has been performed by mechanical force compression on a benchmark Psm-1 disk for comparison of both methods with theoretical optical-stress coefficient method (C_md) from reference. The average stress error by PSIAS_LWC_md is 0.140MPa or 4.6%. Another results of PSAS is lesser than 0.312MPa or 10.3%. Then a PMMA disk by injection molding (IM) is used for estimating the stress-optical coefficients of test materials by PSIAS_LWC_md. Therefore a light-guide prism has been fabricated by IM and injection compression molding with thermal annealing (ICM-ANL) processes to investigate effects of parameters on prism’s residual stress, formability and optical quality. Result of the average residual stress of prism by ICM-ANL process is reduced 24.5% with that of IM process. Similarly, the minimum average non-uniformity (ANU) of prism by ICM-ANL process is 11m or improved 74% and the illumination is promoted as 4% with that of IM process. Verification results of Raman intensity measurement have revealed that the molecular orientation of skin, shear and core layers in filling direction of prisms is much reduced for ICM-ANL process. Final test of hybrid prism with sub-wavelength structure, an Anodic Alumina Oxide (AAO) process is applied to fabricate six inch sub-wavelength structure (6”Al_SWS), and electroforming process is conducted to make 6”Ni_SWS of diameter 93nm and height 360nm. The sub-wavelength structures of hybrid prism are difficult to be demolded because the Ni_SWS of nano-columns are not totally vertically duplicated. Results of this study have been tested and verified for residual stress estimation of light-guide prism with different thickness by PSIAS_LWC_md. Future study can focus on applying the PSIAS_LWC_md and ICM-ANL technique as residual stress estimation on optical elements with different thickness and sub-wavelength structure.

    摘要 I Abstract II 誌謝 III 目錄 VI 圖目錄 XI 表目錄 XX 符號表 XXII 第一章 導論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 研究方法 7 1.4 論文架構 11 第二章 文獻回顧 13 2.1 光彈技術文獻回顧 13 2.2 射出壓縮成形文獻回顧 18 2.3 拉曼強度檢測分子配向文獻回顧 24 2.4 陽極氧化鋁製程與抗反射結構文獻回顧 27 2.5 電鑄模仁應用文獻回顧 36 2.6 相關專利文獻回顧 38 2.7 文獻回顧總結 40 2.7.1 文獻統整 40 第三章 光彈理論與製程技術 47 3.1 光彈理論 47 3.1.1 偏振光[10] 47 3.1.2 光的雙折射現象[44] 48 3.1.3 應力光學定律(optical-stress law)[4] 49 3.1.4 光彈元件的瓊斯矩陣(Jones Martix) 51 3.2 射出壓縮成形 61 3.2.1 傳統射出成形技術 61 3.2.2 射出壓縮成形技術 62 3.3 多孔性陽極氧化鋁製程[45] 65 第四章 光彈應力補償法設計 67 4.1 應力光學係數校正法(C_md) 68 4.2 光彈應力補償法(PSIAS_LWC_md)實驗 70 4.2.1 光彈應力補償法實驗設備 70 4.2.2 光彈應力補償法實驗步驟 75 4.2.3 PMMA disk光彈校正片製作 79 4.3 光彈應力分析軟體(PSAS)設計 81 第五章 實驗設備與規劃 86 5.1 實驗設備與材料 88 5.1.1 射出成形實驗設備 88 5.1.2 陽極處理設備 92 5.2 驗證光彈應力補償法實驗規劃 94 5.3 射出製程實驗規劃 96 5.3.1 菱鏡模具設計變更 97 5.3.2 Moldex3D模流分析 101 5.3.3 射出成形實驗規劃(IM) 103 5.3.4 射壓成形實驗規劃(ICM) 109 5.3.5 模內熱退火實驗規劃 112 5.3.6 模穴壓力檢測 114 5.3.7 次波長結構複製量測 116 5.4 複合式菱鏡製作規劃 117 5.4.1 多孔性陽極氧化鋁(PAA)製作流程 118 5.4.2 以電鑄鎳製程翻印PAA模板 122 5.5 殘留應力檢測 123 5.5.1 應力光彈補償法檢測規劃 123 5.5.2 分子配向性檢測規劃 125 5.6 平面度檢測 131 5.7 光照度檢測 134 第六章 實驗結果與討論 136 6.1 光彈應力補償法實驗結果(實驗A) 137 6.1.1 PSIAS_LWC_md比較於C_md在Psm-1 disk實驗結果 137 6.1.2 PSAS比較於C_md在Psm-1 disk實驗結果 140 6.1.3 PMMA disk之光彈應力係數實驗結果 144 6.2 菱鏡殘留應力生成探討(實驗B_1) 147 6.2.1 各射出製程之光彈條紋實驗結果 147 6.2.2 PSIAS_LWC_md於各製程菱鏡之殘留應力 150 6.2.3 PSAS於各製程菱鏡之殘留應力 158 6.2.4 綜合比較PSAS及PSIAS_LWC_md於殘留應力檢測結果 163 6.2.5 分子配向性實驗結果 166 6.3 菱鏡成型性檢測結果(實驗B_2) 170 6.3.1 進澆口壓力感測結果 170 6.3.2 模穴壓力感測結果 172 6.3.3 入光面平面度檢測 174 6.4 菱鏡照度檢測結果(實驗B_3) 179 6.5 綜合射出製程對照度影響 (實驗B_Summary) 183 6.6 複合式光學菱鏡實驗結果(實驗C) 185 6.6.1 二吋Al_SWS及Ni_SWS模板預實驗製作(實驗C_1) 185 6.6.2 六吋Al_SWS實驗製作 188 6.6.3 六吋Ni_SWS實驗結果 194 6.6.4 次波長結構複製性檢測結果(實驗C_2) 196 6.6.5 平面度及光照度檢測結果(實驗C_2) 201 6.6.6 接觸角量測 203 6.6.7 綜合評估複合式菱鏡實驗結果(實驗C_Summary) 206 第七章 結論與建議 207 7.1 結論 207 7.2 建議 209 參考文獻 210 附錄A 線性以及圓偏振光暗場之瓊斯矩陣運算 210 附錄B 光彈應力影像分析儀(PSIAS)架設 217 附錄C PSIAS使用燈源之主波長檢測報告 220 附錄D PMMA disk射出成形參數與取樣方法 221 附錄E ASTM D4093色階表[46] 222 附錄F FANUC ROBOSHOT α15-iA 機台規格 223 附錄G 石英壓力感測器KISTLER 9204B 224 附錄H 光學菱鏡模具之爆炸圖 225 附錄I 次波長抗反射理論[6] 226 附錄J 次波長抗反射光學設計[36] 235 附錄K 拉曼光譜儀分析原理[52] 240 附錄L 量測設備 243 附錄M PSIAS_LWC_md檢測射出菱鏡之光延遲量 248 附錄N 各射出製程菱鏡之平面度誤差(NU)數據 255 附錄O 複合式菱鏡於模溫130℃實驗結果 259 作者簡介 260

    [1] 李佳柔,"整合次波長微結構之菲涅爾聚光元件於射出成形研究",國立臺灣科技大學,機械工程系碩士論文,2012。
    [2] 陳思婷,"級進式射壓成形應用於具有次波長微米結構之複合式菱鏡研究",國立臺灣科技大學,機械工程系碩士論文, 2013。
    [3] 葉敬賢,"複合式光學元件於振動式射出壓縮成形之殘留應力及光學品質研究",國立臺灣科技大學,機械工程系碩士論文,2011。
    [4] 洪譽碩,"數位光彈之等色線條紋序自動判別法",國立臺灣科技大學,機械工程系,2010。
    [5] 徐睿明,"利用次波長結構添加下轉換螢光粉製作複合型抗反射鏡片",國立臺灣科技大學,機械工程系碩士論文,2013。
    [6] 丁嘉仁、張哲瑋、許沁如與聶雅玉,"次波長結構抗反射膜片發展現況",2006。
    [7] 洪光民,"圓盤與長條樑之理論解析與實驗光學全場量測",國立臺灣大學,機械工程系博士論文,2002。
    [8] D. W. James, "Experimental Stress Analysis", Third Edition, 1991.
    [9] W. B. Young, "Effect of process parameters on injection compressi- on molding of pickup lens", Applied mathematical modelling, vol. 29, 955-971, 2005.
    [10] 詹景翔,"多孔質陽極氧化鋁模板製作似蟬翼抗反射結構",國立臺灣科技大學,機械工程系碩士論文,2009。
    [11] 陳啟榮,"數位光彈分析偏光儀系統之研發",國立成功大學,機械工程學系碩士論文,2004。
    [12] Y. C. Chen, C. H. Chen, and S. C. Chen, "Effects of processing conditions on birefringence development in injection molded parts. II. Experimental measurement", Polymer International, vol. 40, 251-259, 1996.
    [13] K. Ramesh and S. K. Mangal, "Data acquisition techniques in digital photoelasticity: A review", Optics and Lasers in Engineering, vol. 30, 53-75, 1998.
    [14] C. Weng, W. B. Lee, and S. To, "Birefringence techniques for the characterization of residual stresses in injection-moulded micro-lens arrays", Polymer Testing, vol. 28, 709-714, 2009.
    [15] 陳智榮,"白光光彈術於塑膠成形平板殘留應力分析",2009機電整合科技應用研討會論文集暨全國大專生機電整合專題論文研討會,2009。
    [16] 陳永徵,"射出壓縮成型製程特性暨雙折射率差值模擬計算與量測",中原大學,機械工程系博士論文,1998。
    [17] 廖俊郎,"射出壓縮成型對微型製品光學品質之影響研究",雲林科技大學,機械工程系碩士論文,2000。
    [18] 簡惠民,"不等行程射出壓縮應用於精密楔形板件及表面微結構成型性探討",國立臺灣大學,機械工程系碩士論文,2002。
    [19] 高旭麒,"繞射光學元件微射壓成形之研究",國立臺灣科技大學,機械工程系碩士論文,2006。
    [20] 林先明,"複合式光學元件微射壓成形之研究",國立臺灣科技大學,機械工程系碩士論文,2008。
    [21] 李豐吉,"多尺度複合式光學元件射出成形研究",國立臺灣科技大學,機械工程系碩士論文,2009。
    [22] S. H. Lee, S. Y. Kim, J. R. Youn, and B. J. Kim, "Warpage of a large‐sized orthogonal stiffened plate produced by injection molding and injection compression molding", Journal of Applied Polymer Science, vol. 116, 3460-3467, 2010.
    [23] S. C. Chen, G. H. Lee, C. Y. Tseng, T. C. Chen, H. S. Chiu, and C. C. Hsu, "Investigation on warpage behavior of DVD-disk in injection compression molding", SPE-ANTEC, vol2, 1645-1648, 2011.
    [24] M. Takeshima and N. Funakoshi, "Molecular orientation distributi- on in injection-molded polycarbonate discs", Applied Polymer Science, vol. 32, 3457-3468, 1986.
    [25] D. Garcia-Lopez, J. C. Merino, I. Gobernado-Mitre, and J. M. Pastor, "Polarized confocal Raman microspectroscopy studies of chain orientation on injected poly(propylene) montmorillonite nanocomposites", Journal of Applied Polymer Science, vol. 96, pp. 2377-2382, 2005.
    [26] J. Martin, S. Margueron, M. Fontana, M. Cochez, and P. Bourson, "Study of the molecular orientation heterogeneity in polypropylene injection-molded parts by Raman spectroscopy", Polymer Engineering & Science, vol. 50, 138-143, 2010.
    [27] 王晴遠,"高分子熔膠於彈臂搭接處之射出成形與分子配向性分析",國立臺灣科技大學,機械工程系碩士論文,2010。
    [28] G. Thompson, G. Wood, and J. Scully, "Corrosion: aqueous processes and passive films", Treatise on Material Science and technology, vol. 23, 1983.
    [29] C. G. Bernhard, "Structural and Functional Adaptation in a Visual System", Endeavor, Vol.26, 79-84, 1968.
    [30] V. Parkhutik and V. Shershulsky, "Theoretical modelling of porous oxide growth on aluminium", Journal of Applied Physics, vol. 25, 1258, 1992.
    [31] H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step", Science, vol. 268, 1466-1468, 1995.
    [32] N. Q. Zhao, X. X. Jiang, C. S. Shi, J. J. Li, Z. G. Zhao, and X. W. Du, "Effects of anodizing conditions on anodic alumina structure", Journal of materials science, vol. 42, 3878-3882, 2007.
    [33] G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, "The fabrication of subwavelength anti-reflective nanostructures using a bio-template", Nanotechnology, vol. 19, 20, 2008.
    [34] M. Lillo and D. Losic, "Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology", Journal of Membrane Science, vol. 327, 11-17, 2009.
    [35] 陳建志,"鍍鋁矽晶圓之多孔質陽極氧化鋁結構製作大面積抗反射結構製程研究",國立臺灣科技大學,機械工程系碩士論文, 2010。
    [36] K. Yamamoto, T. Yamamoto, T. Takaoka, M. Seigo, and S. Kitagawa, "Application of anti-reflection structures on curved surfaces", Journal of SPIE, 82551R-82551R, 2012.
    [37] C. V. Manzano, J. Martin, and M. S. Martin-Gonzalez, "Ultra- narrow 12 nm pore diameter self-ordered anodic alumina templates", Microporous and Mesoporous Materials, vol. 184, 177-183, 2013.
    [38] Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, and Y. Tanaka, "Nano-imprint lithography using replicated mold by Ni electroforming", Japanese Journal of Applied Physics, vol. 41, 4186-4189, 2002.
    [39] 鍾明宏,"利用矽基微透鏡陣列結構翻模之鎳模仁設計與製作", 國立清華大學,動力機械工程學系碩士論文,2005。
    [40] 黃怡文,"微射出成型曲面模仁研究",國立成功大學,航空太空工程學系碩士論文,2007。
    [41] X. Lin, X. Dou, X. Wang, and R. T. Chen, "Nickel electroplating for nanostructure mold fabrication", Journal of Nanoscience and Nanotechnology, vol. 11, 7006-7010, 2011.
    [42] 張矅庭,"自動化影響處理之穿透式光彈儀",M394457,2010。
    [43] 張奇偉,"光彈法檢測方法與運用於構件之殘餘應力檢測方法", I368024,2012。
    [44] 葉玉堂,"幾何光學",五南圖書出版股份有限公司,2008。
    [45] 張紹華,"結合次微米孔洞陽極氧化鋁基板與導氧功能性薄膜製作導氧元件之研究",國立臺灣科技大學,機械工程系,2013。
    [46] A. Committee, "Standard Test Method for Photoelastic Measure- ments of Birefringence and Residual Strains in Transparent or Translucent Plastic Materials(ASTM D4093)", 1995.
    [47] K. Thomas, M. Sheeba, V. Nampoori, C. Vallabhan, and P. Radhakrishnan, "Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser", Journal of Optics, vol. 10, 055303, 2008.
    [48] 顏穎盟,"平板射出成形之表面粗糙度與幾何尺寸之複製性分析研究",國立臺灣科技大學,機械工程系碩士論文,2007。
    [49] Paul G. Hewitt,"觀念物理IV",天下文化出版社,2012。
    [50] 陳永彬、李昭德、張哲豪與王倫,"以干涉微影方法製作光學抗反射結構之應用研究",2007。
    [51] D. Chen, "Anti-reflection (AR) coatings made by sol–gel processes: A review", Solar Energy Materials and Solar Cells, vol. 68, 313-336, 2001.
    [52] 孫逸民,"儀器分析",全威圖書有限公司,2004。

    QR CODE