簡易檢索 / 詳目顯示

研究生: 賴俊宇
Chun-yu Lai
論文名稱: 結合影像處理技術及分類方法於自動化偏光膜瑕疵檢測之研究
Automated Defect Inspection of Polarizing Films Using Image Processing Techniques and Classification Methods
指導教授: 郭中豐
Chung-feng Kuo
口試委員: 黃昌群
Chang-chiun Huang
趙新民
Shin-min Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 95
中文關鍵詞: 瑕疵檢測非等向擴散形態學徑向基函數類神經網路倒傳遞類神經網路
外文關鍵詞: defect inspection, anisotropic diffusion, morphology, radial basis function neural network, back-propagation neural network
相關次數: 點閱:712下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用影像處理技術及分類方法於液晶顯示器(liquid crystal display, LCD)偏光膜(polarizing film)的瑕疵檢測與分類。因偏光膜產業的競爭越來越激烈,然而目前產業界於偏光膜的自動化瑕疵檢測方面仍缺乏具有高分類準確率的檢測與分類系統。為取代容易誤判的人工分類過程,讓製造廠商可以迅速地得知製程中需要改善或維修的階段,因此本研究提出一套具有高分類準確率的檢測與分類系統,針對偏光膜之中常見的壓點(dents)、異物(particles)、亮點(bright spots)、刮傷(scratches)等四種瑕疵進行辨識與分類。
    首先本研究利用中值濾波器(median filter)去除偏光膜瑕疵影像中的脈衝雜訊(impulse noise),而針對背景中尚存的不規則雜訊則以改良型非等向擴散(anisotropic diffusion)予以平滑並同時銳化瑕疵區域的邊緣細節,接著以傅立葉轉換(Fourier transform)將瑕疵影像轉換至頻率域,配合巴特沃斯高通濾波器(butterworth high pass filter)進一步銳化瑕疵區域的邊緣細節,再利用傅立葉反轉換轉回至空間域完成影像強化之過程。而影像分割的部分是利用肯尼邊緣偵測器(Canny edge detector)先找出瑕疵區域的邊緣,再利用兩階段的形態學(morphology)處理以取得完整的瑕疵區域。對於四種常見瑕疵之分類,本研究是以瑕疵影像中所擷取到之灰階共生矩陣(gray level co-occurrence matrix, GLCM)中的對比度(contrast)、灰階共生矩陣中的均勻性(energy)、最大灰階值(maximum gray level)及偏心度(eccentricity)等四種特徵值作為分類器之輸入。最後利用徑向基函數類神經網路(radial basis function neural network, RBFNN)及倒傳遞類神經網路(back-propagation neural network, BPNN)作為分類器,使用96個瑕疵影像作為訓練樣本,再由184個瑕疵影像作為測試樣本以驗證分類效果,其中徑向基函數類神經網路的總體辨識率達到98.9%,證實可應用於產業界,藉此提升產品良率並降低成本。


    In this study, image-processing techniques and classification methods were applied to propose an automated defect inspection and classification system of liquid crystal display polarizing films. Nowadays, competitions between polarizing films manufacturers are fiercer than before. Furthermore, the current automated defect inspection and classification systems used in companies manufacturing polarizing films still lack high classification accuracy. To replace the manual classifying process that easily misjudges and allow manufacturers to quickly know parts of the manufacturing process to fix, we proposed an automated defect inspection and classification system with very high classification accuracy. We focused on classifying four common defects: dents, particles, bright spots, and scratches.
    During the image enhancement process, we applied median filter to eliminate background impulse noises. Then, improved anisotropic diffusion was used to soothe the irregular background noises and to sharpen the edge and detail of defect regions. To make the edge and detail sharper and background smoother, we then applied Fourier transform with butterworth high pass filter executed in frequency domain. To achieve precise image segmentation of defect regions, we used the Canny edge detector to find optimal edges of defect regions. Then, the two-stage morphology process was used to correctly determine the entire defect regions. According to the effectiveness analysis of different features, four types of input features for classifier, which were contrast of gray level co-occurrence matrix (GLCM), energy of gray level co-occurrence matrix, maximum gray level, and eccentricity, were extracted. With 96 defect images as training samples and 184 defect images as test samples, we finally used the radial basis function network (RBFNN) and back-propagation neural network (BPNN) as classifiers to validate the classification accuracy of our proposed system. The result shows that the classification accuracy by using the radial basis function network is 98.9%. Thus, our proposed system can be used by manufacturing companies for higher yield rate and lower cost.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIII 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 論文架構 8 第2章 偏光膜介紹 10 2.1 偏光膜的原理與結構 10 2.1.1偏極光原理 10 2.1.2偏光膜基本構造 12 2.1.3偏光膜各層材料簡介 14 2.2 偏光膜的種類 15 2.3 偏光膜的製程 16 2.4 偏光膜常見瑕疵的成因與定義 17 2.4.1壓點瑕疵 19 2.4.2異物瑕疵 19 2.4.3亮點瑕疵 20 2.4.4刮傷瑕疵 20 第3章 數位影像處理技術 22 3.1 數位影像處理技術簡介 22 3.1.1影像擷取 24 3.1.2影像強化 24 3.1.3影像分割 25 3.1.4影像的表示與描述 25 3.1.5影像的辨識與分類 26 3.1.6知識資料庫 26 3.2 中值濾波器 26 3.3 非等向擴散 27 3.3.1 Perona-Malik非等向擴散模型 28 3.3.2 Perona-Malik模型的改良 31 3.4 傅立葉轉換 33 3.4.1二維離散傅立葉轉換及反轉換 33 3.4.2二維離散傅立葉轉換於影像處理之應用 34 3.5 高通濾波器 35 3.5.1理想高通濾波器 36 3.5.2高斯高通濾波器 37 3.5.3巴特沃斯高通濾波器 37 3.6 肯尼邊緣偵測器 39 3.6.1非最大值抑制法 40 3.6.2遲滯門檻化法 41 3.6.3肯尼邊緣偵測器基本步驟 42 3.7 形態學處理 42 3.7.1侵蝕 42 3.7.2膨脹 43 3.7.3斷開 44 3.7.4閉合 44 3.7.5填充 46 3.8 特徵值擷取 47 3.8.1灰階共生矩陣 47 第4章 分類理論 52 4.1 類神經網路簡介 52 4.1.1類神經網路的分類 54 4.1.2類神經網路的運作過程 55 4.1.3類神經網路的優點 56 4.2 倒傳遞類神經網路 56 4.2.1倒傳遞類神經網路架構 56 4.2.2倒傳遞類神經演算法 58 4.2.3靈敏度 59 4.2.4倒傳遞類神經網路的參數設定 61 4.3 徑向基函數類神經網路架構 61 4.3.1徑向基函數類神經網路架構 62 4.3.2徑向基函數類神經演算法 63 4.3.3徑向基函數類神經網路的參數設定 64 第5章 瑕疵辨識與分類 66 5.1 作業系統及程式開發軟體 66 5.2 硬體設備 66 5.3 實驗流程 69 5.4 特徵值分析 83 5.5 徑向基函數類神經網路辨識結果 86 5.6 倒傳遞類神經網路辨識結果 87 5.7 結果與討論 89 第6章 結論與未來研究方向 92 6.1 結論 92 6.2 未來研究方向 93 參考文獻 94

    [1] 葉錦清,「偏光膜產業發展趨勢分析」,工研院IEK產業情報網,四月,2011年。
    [2] 葉仰哲,「LCD偏光板市場與廠商動態回顧」,工研院IEK產業情報網,十月,2013年。
    [3] Y. G. Yoon, S. L. Lee, C. W. Chung, and S. H. Kim, “An Effective Defect Inspection System for Polarized Film Images Using Image Segmentation and Template Matching Techniques”, Computers & Industrial Engineering, Vol. 55, No. 3, pp. 567-583, 2008.
    [4] C. H. Noh, S. L. Lee, D. H. Kim, C. W. Chung, and S. H. Kim, “An Effective and Efficient Defect Inspection System for TFT-LCD Polarized Films Using Adaptive Thresholds and Shape-Based Image Analyses”, International Journal of Production Research, Vol. 48, No. 17, pp. 5115-5135, 2010.
    [5] 周宥澄,「智慧型線上即時偏光板瑕疵檢測系統之開發與研製」,國立台灣科技大學高分子工程研究所碩士論文,2007年。
    [6] P. Perona, and J. Malik, “Scale-Space and Edge Detection Using Anisotropic Diffusion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 7, pp. 629-639, 1990.
    [7] S. M. Chao, and D. M. Tsai, “Anisotropic Diffusion with Generalized Diffusion Coefficient Function for Defect Detection in Low-Contrast Surface Images”, Pattern Recognition, Vol. 44, No. 5, pp. 1917-1931, 2010.
    [8] S. M. Chao, and D. M. Tsai, “An Improved Anisotropic Diffusion Model for Detail- and Edge-Preserving Smoothing”, Pattern Recognition, Vol. 31, No. 13, pp. 2012-2023, 2010.
    [9] U. K. Nafis, “Histogram Statistics Based Variance Controlled Adaptive Threshold in Anisotropic Diffusion for Low Contrast Image Enhancement”, Signal Processing, Vol. 93, No. 6, pp. 1684-1693, 2013.
    [10] S. Chen, B. Lin, X. Han, and X. Liang, “Automated Inspection of Engineering Ceramic Grinding Surface Damage Based on Image Recognition”, The International Journal of Advanced Manufacturing Technology, Vol. 66, No. 1, pp. 431-443, 2013.
    [11] H. D. Lin, “Computer-Aided Visual Inspection of Surface Defects in Ceramic Capacitor Chips”, Journal of Materials Processing Technology, Vol. 189, No. 3, pp. 19-25, 2013.
    [12] C. J. Lu, and D. M. Tsai, “Defect Inspection of Patterned TFT-LCD Panels Using A Fast Sub-Image Based SVD”, International Journal of Production Research, Vol. 42, No. 20, pp. 4331-4351, 2004.
    [13] K. Singh, and R. Kapoor, “Image Enhancement Using Exposure Based Sub Image Histogram Equalization”, Pattern Recognition Letters, Vol. 36, pp. 10-14, 2014.
    [14] H. O. Chen, N. S. P. Kong, and H. Ibrahim, “Bi-Histogram Equalization with A Plateau Limit for Digital Image Enhancement”, IEEE Transactions on Consumer Electronics, Vol. 55, No. 4, pp. 2072-2080, 2009.
    [15] H. Hedberg, P. Dokladal, and V. Owall, “Binary Morphology with Spatially Variant Structuring Elements: Algorithm and Architecture”, IEEE Transactions on Processing, Vol. 18, No. 3, pp. 562-572, 2009.
    [16] M. H. Shi, S. S. Jiang, H. R. Wang, and B. Xu, “Multiclass Defect Detection and Classification in Weld Radiographic Images Using Geometric and Texture Features”, Expert Systems with Applications, Vol. 37, No. 12, pp. 7606-7614, 2010.
    [17] C. Y. Chang, C. H. Chang, C. H. Li, and M. D. Jeng, “Learning Vector Quantization Neural Networks for LED Wafer Defect Inspection”, International Journal of Innovative Computing, Vol. 4, No. 10, pp. 2565-2579, 2007.
    [18] C. Y. Chang, C. H. Chang, C. H. Li, and M. Jeng, “Radial Basis Function Neural Networks for LED Wafer Defect Inspection”, Second International Conference on Innovative Computing, Information and Control, pp. 230-234, 2007.
    [19] C. Y. Chang, C. H. Li, S. Y. Lin, and M. Jeng, “Application of Two Hopfield Neural Networks for Automatic Four-Element LED Inspection”, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 39. No. 3, pp. 325-365, 2009.
    [20] S. Ravikumar, K. I. Ramachandran, and V. Sugumaran, “Machine Learning Approach for Automated Visual Inspection of Machine Components”, Expert Systems with Applications, Vol. 38, No. 4, pp. 3260-3266, 2011.
    [21] E. H. Land, “Display Device Employing Polarized Light”, United State Patent Office, No. 209061, 1938.
    [22] 賴耀輝,「運用六標準差管理於LCD偏光膜維修之製程改善」,私立南台科技大學工業管理研究所碩士論文,2010年。
    [23] 明基材料股份有限公司網站,偏光片研發技術,2014年,http://www.benqmaterials.com/chinese/02_rd/rd_detail.aspx?pid=2 。
    [24] 李雅惠,「縮短偏光板製造業新產品開發送樣時程之研究-以X公司為例」,國立中央大學工業管理研究所碩士論文,2009年。
    [25] 洪綺英,「二色性染料偏光膜製作」,國立台北科技大學有機高分子研究所碩士論文,2009年。
    [26] 林玉堂,「偏光板產業安全文化評估」,國立高雄第一科技大學環境與安全衛生工程所碩士論文,2011年。
    [27] J. Ma, X. Ye, and B. Jin, “Structure and Application of Polarizer Film for Thin-Film-Transistor Liquid Crystal Displays”, Displays, Vol. 32, No. 2, pp. 49-57, 2011.
    [28] R. G. Gonzalez, and R. E. Woods, “Digital Image Processing 3rd Edition”, Prentice Hall, Taiwan, Taipei, 2008.
    [29] J. W. Jukey, “Nonlinear (Nonsuperposable) Method for Smoothing Data”, 1974 Electronics and Aerospace Systems Conference, pp. 673, 1974.
    [30] W. K. Pratti, “Median Filtering”, Meta-heuristic Intelligence Based Image Processing, Vol. 31, No. 13, pp. 2012-2023, 1975.
    [31] S. M. Chao, and D. M. Tsai, “An Anisotropic Diffusion-Based Defect Detection for Low-Contrast Glass Substrates”, Image and Vision Computing, Vol. 26, No. 2, pp. 187-200, 2008.
    [32] J. Canny, “A Computational Approach to Edge Detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 679-698, 1986.
    [33] R. Medina-Carnicer, R. Munoz-Salinas, E. Yeguas-Bolivar, and L. Diaz-Mas, “A Novel Method to Look for The Hysteresis Thresholds for The Canny Edge Detector”, Pattern Recognition, Vol. 44, No. 6, pp. 1201-1211, 2011.
    [34] J. Serra, “Image Analysis and Mathematical Morphology”, Academic Press, New York, 1982.
    [35] 鍾國亮 編著,「影像處理與電腦視覺第五版」,東華書局有限公司,台灣台北,2014年。
    [36] R. M. Haralick, “Statistical and Structural Approaches to Texture”, Proceedings of the IEEE, Vol. 67, No. 5, pp. 786-804, 1979.
    [37] 蘇木春,張孝德 編著,「機器學習:類神經網路、模糊系統以及基因演算法則」,全華圖書,台灣台北,2007年。
    [38] 王進德、蕭大全 編著,「類神經網路模式應用與實作」,全華圖書,台灣台北,2005年。
    [39] 羅華強 編著,「類神經網路:MATLAB的應用」,高立圖書,台灣台北,2005年。
    [40] 張斐章 編著,「類神經網路導論:原理與應用」,滄海圖書,台灣台北,2010年。
    [41] A. McAndrew 編著,「數位影像處理」,高立圖書,台灣台北,2010年。

    無法下載圖示 全文公開日期 2019/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE