簡易檢索 / 詳目顯示

研究生: 曾建誠
CHIEN-CHENG TSENG
論文名稱: 官能基化之氧化石墨烯及脫層石墨烯奈米層板之合成及探討奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽/有機高分子核殼型顆粒、官能基化之氧化石墨烯及官能基化之脫層石墨烯奈米層板對不飽和聚酯及乙烯基酯樹脂之體積收縮、機械性質及微觀型態結構之影響
Synthesis of functionalized graphene oxide and functionalized exfoliated graphene nanoplatelets and effects of nano-scale and submicron-scale core-shell rubber additives, inorganic silica /organic polymer core-shell particle, functionalized graphene oxide, and functionalized exfoliated graphene nanoplatelet on the volume shrinkage, mechanical properties and cured sample morphology for unsaturated polyester and vinyl ester resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 184
中文關鍵詞: 核殼型橡膠二氧化矽奈米顆粒熱還原氧化石墨烯乙烯基酯樹脂微觀型態結構體積收縮機械性質
外文關鍵詞: Core-Shell Rubber(CSR), Silica nanoparticle(SNP), Thermally reduced of graphene oxide( TRGO), vinyl ester resin (VER), volume shrinkage, morphology, mechanical properties
相關次數: 點閱:444下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討次微米級核殼型橡膠(CSR)、奈米級無機二氧化矽顆粒(SNP)和熱還原氧化石墨烯(TRGO)三種特用添加劑對苯乙烯(St)/乙烯基酯(VER)/特用添加劑三成份系統其聚合固化之微觀型態結構、抗體積收縮及機械性質之影響。
    奈米級無機二氧化矽顆粒其表面經由帶C=C雙鍵的矽烷MPS改質而得,次微米級核殼型橡膠(CSR)其核心為聚丙烯酸正丁酯(PBA),而外殼主要為聚甲基丙烯酸甲酯(PMMA),並且用15 mole %帶有環氧基團之甲基丙烯酸環丙氧酯(GMA)改質外殼。氧化石墨則藉由帶有C=C雙鍵之3-(甲基丙烯醯氧)丙基三甲氧基矽烷(γ-MPS)改質親水性氧化石墨獲得官能基化氧化石墨。
    上述三種特用添加劑對St/VER/特用添加劑三成份系統在反應前之相容性,固化樣品之SEM及TEM微觀結構、體積收縮及機械性質,將於文中探討之其聚合物之實驗結果。


    The effects of the submicron-scale core–shell rubber (CSR), nano-scale silane-grafted silica nanoparticles (SNP) and thermally reduced graphene oxide as special additives on volume shrinkage characteristics and mechanical properties of the styrene (St)/vinyl ester resin(VER)/special additive ternary systems cured at 120 ℃ and post cured at 150 ℃have been investigated.
    The SNP with a diameter of 15 nm was synthesized by size-controllable hydrolysis of elemental silicon, followed by the surface treatment of 3-methacryloxypropyltrimethoxysilane (γ-MPS) to obtain the MPS-silica. The CSRs were synthesized by two-stage soapless emulsion polymerizations, where the soft core was made from rubbery poly(n-butyl acrylate), and the hard shell was made from 85 mole% of methyl methacrylate, 15mol% glycidyl methacrylate, and 1mole% of ethylene glycol dimethacrylate as the crosslinking agent.
    The experimental results are explained by an integrated approach of measurements of the static phase characteristics of a St/VER/special additive system, the cured sample morphology with SEM, TEM, and mechanical properties.

    摘要 I Abstract II 第一章 緒論 1 1-1不飽和聚酯(UP) 1 1-2乙烯基酯樹脂(Vinyl Ester Resin , VER) 2 1-3增韌劑 3 1-4抗收縮劑 5 1-5蒙特納石黏土及其高分子奈米複合材料 6 1-6石墨烯/高分子奈米複合材料 7 1-7矽烷偶合劑改質氧化石墨/熱脫層氧化石墨烯之奈米高分子複合材料 14 1-8研究範疇 15 第二章 文獻回顧 16 2-1自由基聚合反應 16 2-2不飽和聚酯(UP)樹脂之合成 19 2-3不飽和聚酯(UP)樹脂與苯乙烯(St)之交聯共聚合反應 20 2-4苯乙烯(St) /不飽和聚酯(UP) /抗收縮劑(LPA)三成份系統之相溶性研究 23 2-5低收縮不飽和聚酯樹脂之抗收縮補償機構 24 2-6低收縮不飽和聚酯樹脂系統聚合固化後微觀結構之研究 26 2-7抗收縮劑對UP樹脂固化後體積收縮影響之研究 28 2-8不飽和聚酯硬化後的機械性質研究 30 2-9核殼性橡膠增韌劑 32 2-10蒙特納石黏土-不飽和聚酯高分子奈米複合材料研究 35 2-11石墨烯/高分子奈米複合材料之研究 38 2-12氧化石墨(GO)及熱還原氧化石墨(TRGO)的製備 39 2-13烷氧基矽烷偶合劑改質之氧化石墨(Silane-GO)及熱還原氧化石墨烯(Silane-TRGO) 42 第三章 實驗方法與設備 44 3-1實驗原料 44 3-1-1環氧樹脂與乙烯基酯樹脂 44 3-1-2特用添加劑 47 3-1-2-1通用型核殼型橡膠(General Purpose Core-Shell Rubber,gp-CSR) 47 3-1-2-1矽烷偶合劑接枝奈米級無機二氧化矽顆粒(nano-scale silane-grafted silica nanoparticles,SNP) 48 3-1-3實驗藥品 49 3-2實驗儀器 52 3-3實驗步驟 55 3-3-1 熱還原氧化石墨烯製備(39, 88, 88a) 55 3-3-2 烷氧基矽烷偶合劑改質氧化石墨(Silane-GO) 56 3-3-3 WAXS 散射實驗 57 3-3-4 FTIR定性分析 57 3-3-5 Neat St/UP(VER) 溶液之固化試片製備 58 3-3-6 St/UP(VER)/additive之三成份溶液之固化試片製備 60 3-3-7體積變化量測-密度法 62 3-3-8 St/VER(n=2)/additive之三成分系統相分離特性 63 3-3-9拉伸測試 64 3-3-10耐衝擊測試 64 3-3-11波松比測試 65 3-3-12破壞韌性測試 66 3-3-13破壞能量 67 3-3-14掃描式電子顯微鏡(SEM)觀測樣品製備 67 3-3-15穿透式電子顯微鏡(TEM)觀測樣品製備[88a] 67 第四章 結果與討論 69 4-1 St/VER(n=2)/Additive之三成份系統未反應前之相溶性研究 69 4-1-1 CSR(BA/MMA-EGDMA-GMA(500nm))之三成份系統 69 4-1-2 Silane改質奈米級二氧化矽顆粒 (MPS-SiO2)之三成份系統 70 4-2 Takayanagi 機械模式 71 4-3 St/VER(n=2)/CSR(BA/MMA-EGDMA-GMA(15)(500nm))之MR=2/1三成份系統 73 4-3-1 SEM微觀型態結構 73 4-3-2 TEM微觀型態結構 76 4-3-3體積收縮特性 82 4-3-4機械性質研究 84 4-3-4-1耐衝擊強度 84 4-3-4-2楊氏模數 85 4-3-4-3抗張強度 87 4-3-4-4斷裂拉伸率 88 4-4 St/VER(n=2)/SNP(MPS-SiO2)之MR=2/1三成份系統 90 4-4-1 SEM微觀型態結構 90 4-4-2 TEM微觀型態結構 93 4-4-3體積收縮特性 98 4-4-4 機械性質研究 100 4-4-4-1耐衝擊強度 100 4-4-4-2楊氏模數 102 4-4-4-3抗張強度 104 4-4-4-4斷裂拉伸率 106 4-5 St/VER(n=2)/CSR(BA/MMA-EGDMA-GMA(15)(500nm)) /SNP(MPS-SiO2)之MR=2/1四成份系統 108 4-5-1 SEM微觀型態結構 108 4-5-2 TEM微觀型態結構 111 4-5-3體積收縮特性 115 4-5-4機械性質研究 117 4-5-4-1耐衝擊強度 117 4-5-4-2楊氏模數 119 4-5-4-3抗張強度 121 4-5-4-4斷裂拉伸率 123 4-5-5總結 125 4-6熱還原氧化石墨烯(TRGO) 126 4-7烷氧基矽烷偶合劑改質之氧化石墨(Silane-GO) 131 4-8 St/VER(n=2)/TRGO之MR=2/1三成份系統 136 4-8-1 SEM微觀型態結構 136 4-8-2 TEM微觀型態結構 139 4-8-3體積收縮特性 144 4-8-4機械性質研究 146 4-8-4-1耐衝擊強度 146 4-8-4-2楊氏模數 147 4-8-4-3抗張強度 149 4-8-4-4斷裂拉伸率 150 第五章 結論 152 第六章 建議與未來工作 156 第七章 參考文獻 157 第八章 附錄 163

    1.R.B. Burn, Polyester Molding Compounds,Marcel Dekker, Inc, New York,
    1982.
    2.R.E. Young, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon
    and Breach Science Publishers, 1976.
    3.M.E. Kelly, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976, P370.
    4.F. Fekete, “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and
    Breach Science Publishers, 1976, P28.
    5.E. Martuscelli, P. Musto, G.. Ragosta, G. Scarinzi, and E. Bertotti, J.Polym.Sci.,
    Part B:Polym.Phys., 1993. 31, 619.
    6.S.B. Pandit and V.M. Nadkarni, Ind. Eng. Chem Res., 1994. 33, 2778.
    7.The B.F. Goodrich Co. WO93/21274 Oct. 28,1993.
    8.Crc for Polymers Pty. Ltd., WO97/43339 Nov. 20,1997.
    9.吳嘉鴻, 碩士論文,台灣科技大學, 2003.
    10.黃俊翰, 碩士論文,台灣科技大學, 2009.
    11.戴孟祥, 碩士論文, 台灣科技大學, 2010.
    12.陳曉蘭, 碩士論文,台灣科技大學, 2010.
    13.許毓倫, 碩士論文,台灣科技大學, 2011.
    14.葉冠良, 碩士論文,台灣科技大學, 2015.
    15.E.J. Bartkus and C.H Kroekel, Appl.Polym.Symp., 1970. 15, 113.
    16.K.E.Atkins, in”Sheet Molding Compound :Science and Technology”Ed., H.G.
    Kia, Hanser Publishers, 1993. Ch4.
    17.V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1974.
    18, 2763.
    18. V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1975.19, 3045.
    19.L. Suspene, D. Fourquier, and Y. S. Yang, Polymer, 1991. 32, 1593.
    20. Y. J. Huang and C. M. Liang, Polymer, 1996. 37, 401.
    21.L. J. Lee, W. Li , and K.H. Hsu, Polymer, 2000. 41, 711.
    22.C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 1991. 32, 636.
    23.Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym.Sci., 2003. 89, 3336.
    24.J.P. Dong , J.H. Lee , D.H. Lai, and Y. J. Huang, Appl. Polym.Sci., 2005. 98,264.
    25.C.P. Hsu, M. Kinkelaar, P. Hu, and L.J. Lee., Polym.Eng.Sci., 1991. 31, 1450.
    26.Y.J. Huang, C.J. Chu, and J.P. Dong, J. Appl. Polym. Sci., 2000. 78, 543.
    27.Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995. 55, 323.
    28.J.P. Dong, J.G. Huang, F.H. Lee, J.W. Roan and Y.J. Huang, J.Appl.Polym.Sci.,2004. 91, 3388.
    29.Y.J. Huang and W.C. Jiang, Polymer, 1998. 39, 6631.
    30.B. M. Novak, Adv. Mater., 1993. 5, 422.
    31.X. Kornmann, L. A. Berghund, J. Sterte, and E. P. Giannelis, Polym. Eng. Sci.,
    1998. 38, 1351.
    32.Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and Kamigaito,
    J.Polym.Sci. Part A: Polym.Chem, 1993. 31, 983.
    33.E. P. Giannelis, Adv. Mater., 1996. 8, 29.
    34.A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 1993. 8, 1179.
    35.P. B. Messersmith and E. P. Giannelis, Chem. Mater., 1994. 6, 1719.
    36.W. Gilman and T. Kashiwagi, SAMPE Journal, 1997. 33, 42.
    37.Hyunwoo Kim, Ahmed A. Abdala, and Christopher W. Macosko,
    Graphene/Polymer Nanocomposites Macromolecules 2010, 43, 6515–6530
    38.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666–669.
    39.Hannes C. Schniepp, Je-Luen Li, Michael J. McAllister, Hiroaki Sai, Margarita Herrera-Alonso, Douglas H. Adamson, Robert K. Prud’homme, Roberto Car, Dudley A. Saville, and Ilhan A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide J. Phys. Chem. B, 2006 Vol.110, No. 17,8535
    40.Hyunwoo Kim, Yutaka Miura, and Christopher W. Macosko Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and
    Electrical Conductivity Chem. Mater. 2010, 22, 3441–3450
    41.Prithu Mukhopadhyay, Rakesh K. Gupta, Graphite Graphene, and their polymer nanocomposites, CRC Press Taylor & Francis Group, 2013
    42.Hyunwoo Kim and Christopher W. Macosko Morphology and Properties of
    Polyester/Exfoliated Graphite Nanocomposites Macromolecules 2008, 41,3317-3327
    43.Nikhil V. Medhekar, Ashwin Ramasubramaniam, Rodney S. Ruoff, and Vivek
    B. Shenoy, Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties, ASCNANO VOL 4 ,NO. 4 ,2300–2306, 2010
    44.盧天智, 碩士論文,台灣科技大學, 1991.
    45.H.R. Allcock and F.W. Lampe, ”Contemporary Polymer Chemistry”, 2nd Ed., Prentice Hall, Englewood Cliffs, 1990, 50.
    46.Y.S. Yang and L.J. Lee, Polymer, 1988. 29, 1793.
    47.K. Horie, I. Mita, and H. Kambe, J.Polym.Sci.PartA-1:Polym. Chem., 1969. 7, 2561.
    48.江文慶, 碩士論文,台灣科技大學, 1996.
    49.Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995. 55, 305.
    50.Y.J. Huang and J.C. Horng, Polymer, 1998. 39, 3683.
    51.Y.J. Huang and L.D. Chen, Polymer, 1998. 39, 7049.
    52.蘇進成, 碩士論文,台灣科技大學, 1992.
    53.林立翔, 碩士論文,台灣科技大學, 1992.
    54.Y.J. Huang and C.C. Su, Polymer, 1994. 35, 2397.
    55.Y.J. Huang, T.J. Lu, and W. Hwu, Polym. Eng. Sci., 1993. 33, 1.
    56.C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 1991. 32, 786.
    57.T. Mitani, H. Shiraishi, K. Honda, and G.E. Owen, 44th Annual Conference
    Composite Institute,SPI,Session 12-F, 1989.
    58.W.D. Cook and O. Delatycki, J.Polym.Sci.,Polym.Phys.Ed., 1974. 12, 2111.
    59.W.D. Cook and O. Delatycki, J.Polym.Sci.,Polym.Phys.Ed., 1974. 12, 1925.
    60.Y.J. Huang, S.C. Lee, and J.P. Dong, J. Appl. Polym. Sci., 2000. 78, 558.
    61.Y.J. Huang, T.S. Chen, J.G. Huang, and F.H. Lee, J.Appl.Polym.Sci., 2003. 89,3347.
    62.D.S. Kim, K. Cho, J.H. An, and C.E. Park, J. Mater. Sci., 1994. 29, 1854.
    63.J.S. Ullett and R.P. Chartoff, Polym. Eng. Sci., 1995. 35, 1086.
    64.M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, and G. Scarinzi, J.Appl.
    Polym. Sci., 1995. 58, 1825.
    65.M.L.L. Maspochand and A.B. Matinez, Polym.Eng. Sci., 1998. 38, 290.
    66.N. A. Miller and C. D. Stirling, Polym. Comps., 2001. 9, 31.
    67.K. F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 1998. 69, 2069.
    68.K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 1998. 70, 2313.
    69.P. Hazot, C. Pichot, and A. Maazouz,, Macromol Chem. Phys., 2000. 201, 632.
    70.B.J.P. Jansen, S. Rastogi, H.E.H. Meijer, and P.J.Lemstra,Macromolecules, 2001. 34, 3998.
    71.H.J. Sue, E.I. Garciameitin, and D.M. Picklman, in Polymer Toughening, Ch. 5, ed., C.B. Arends, Marcel Dekker, 1996.
    72.The Dow Chemical Company US Patent 4,778,851 Oct. 18 1998.
    73.J.Y. Qian, R.A.Pearson, V.L. Dimonie, and M.S. El-Aasser, J. Appl. Polym. Sci.,1995. 58, 439.
    74.D. J. Suh, Y. T. Lim, and O. O. Park, Polymer, 2000. 41, 8557.
    75.R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fun, A. Chavira, and A. K. Thompsor, Polymer, 2002. 43, 3669.
    76.The Dow Chemical Company US Patent 6,287,922 Sep.11, 2001.
    77.A. Al-khanabashi, M. El-Gamal, and A. Moet, J. Appl. Polym. Sci., 2005. 98, 767.
    78.梁繼文, 礦物學(下), 1984.
    79.T. Lan and T.J Dinnavaia, Chem. Mater, 1994. 6, 2216.
    80.H. Kim and C.W. Macosko, Macromolecules, 41, 3317 (2008).
    81.W. Huang, X. Ouyang, and L.J. Lee, ACS Nano, 6, 10178 (2012).
    82.J.Z. Xu, C. Chen, Y. Wang, H. Tang, Z.M. Li, and B.S. Hsiao, Macromolecules, 44, 2808 (2011).
    83.J.R. Potts, O. Shankar, L. Du, and R.S. Ruoff, Macromolecules, 45, 6045
    (2012).
    84.S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and . Dean, Macromolecules, 42,5251 (2009).
    85.S. Ganguli, A.K. Roy, D.P. Anderson, Carbon, 46, 806 (2008).
    86.M. Martin-Gallego, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermanno,
    Polymer, 52, 4664 (2011).
    87.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia,
    Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon, 45, 1558 (2007).
    88.W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
    88a黃智偉, 碩士論文,台灣科技大學, 2014.
    89. Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H,. Zhao, Langmuir, 25, 11808 (2009).
    90.F. Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt, Macromolecules, 45, 7083 (2012).
    91.Michael J. McAllister, Je-Luen Li, Douglas H. Adamson, Hannes C. Schniepp, Ahmed A. Abdala, Jun Liu,X,O Margarita Herrera-Alonso, David L. Milius,Roberto Car, Robert K. Prud’homme, and Ilhan A. Aksay. Single Sheet
    Functionalized Graphene by Oxidation and Thermal Expansion of Graphite
    Chem. Mater. 2007, 19, 4396-4404
    92.Folke Johannes Toぴ lle, Karlheinz Gamp, Rolf Muぴ lhaupt Scale-up and
    purification of graphite oxide as intermediate for functionalized graphene
    CARBON 75 (2014) 432–442
    93.Deepti Krishnan, Franklin Kim, Jiayan Luo, Rodolfo Cruz-Silva, Laura J. Cote,Hee Dong Jang, Jiaxing Huang Energetic graphene oxide: Challenges and
    opportunities Nano Today (2012) 7, 137—152
    94.Ayrat Dimiev, Dmitry V. Kosynkin, Lawrence B. Alemany, Pavel Chaguine,
    and James M. Tour. Pristine Graphite Oxide J. Am. Chem.Soc. 2012, 134, 2815−2822
    95.Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. (2008).
    Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3 (2), 101-105.
    96.Silvina Cerveny Fabienne Barroso-Bujans,A´ ngel Alegrı´a, and Juan Colmenero Dynamics of Water Intercalated in Graphite Oxide J. Phys. Chem. C 2010, 114, 2604–2612
    97. Daniel R. Dreyer, Sungjin Park, Christopher W. Bielawski and Rodney S. Ruoff. The chemistry of graphene oxide Chem. Soc. Rev., 2010, 39, 228–240
    98.Heyong He , Jacek Klinowski , Michael Forster , Anton Lerf A new structural model for graphite oxide Chemical Physics Letters 287 _1998. 53–56
    99.Anton Lerf, Heyong He, Michael Forster, and Jacek Klinowski, Structure of
    Graphite Oxide Revisited| J. Phys. Chem. B 1998, 102, 4477-4482
    100.Wei Gao, Lawrence B. Alemany, Lijie Ci and Pulickel M. Ajayan. New
    insights into the structure and reduction of graphite oxide Nature Chem.
    2009, 1, 403-408, S403/1-S403/20
    101.M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho and Y. J. Chabal
    Unusual infrared-absorption mechanism in thermally reduced graphene oxide
    NATURE MATERIALS VOL 9 OCTOBER 2010
    102.Muge Acik, Cecilia Mattevi, Cheng Gong, Geunsik Lee, Kyeongjae Cho,
    Manish Chhowalla, and Yves J. Chabal. The Role of Intercalated Water in
    Multilayered Graphene Oxide ACS NANO VOL. 4 NO. 10 5861–5868 2010
    103.CHRISTOPHER S. BRAZEL, STEPHEN L. ROSEN FUNDAMENTAL PRINCIPLES OF POLYMERIC MATERIALS 3rd Ed. 2012 by John Wiley & Sons, Inc.
    104.M. Masmoudi, M. Abdelmouleh, R. Abdelhedi. Infrared characterization and
    electrochemical study of γ-methacryloxypropyltrimethoxysilane grafted in to
    surface of copper Spectrochimica Acta Part A: Molecular and Biomolecular
    Spectroscopy 118 (2014) 643–650
    105.Qing Liu, Jiang Ding, Daphne E. Chambers, Subir Debnath, Stephanie L.
    Wunder, George R. Baran. Filler-coupling agent-matrix interactions in
    silica/polymethylmethacrylate composites 2001 John Wiley & Sons, Inc. J
    Biomed Mater Res 57: 384–393, 2001
    106.M. Castellano, A. Gandini, P. Fabbri, and M.N. Belgacem. Modification of
    cellulose fibres with organosilanes: Under what conditions does coupling
    occur? Journal of Colloid and Interface Science 273 (2004) 505–511
    107.Hatsuo Ishida and James D. Miller Substrate Effects on the Chemisorbed and Physisorbed Layers of Methacryl Silane Modified Particulate Minerals
    Macromolecules, Vol. 17, No. 9, 1984
    108.E. P. Plueddemann, Silane Coupling Agents, 2nd Ed., Plenum Press, New
    York (1991).
    109.Patrick W. K. Lam, Polym. Eng. Sci., 1989, 29(10),690-698
    110.郭庭蓁, 碩士論文 台灣科技大學, 2006.
    111.M. Takayanagi, K. Emada, and T. Kajiyama, J. Polym. Sci. Part C, 1966. 15,263.
    112.L.H. Sperling, INTRODUCTION TO PHYSICAL POLYMER SCIENCE, 2006 by John Wiley & Sons

    無法下載圖示 全文公開日期 2017/08/12 (校內網路)
    全文公開日期 2025/08/12 (校外網路)
    全文公開日期 2025/08/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE