簡易檢索 / 詳目顯示

研究生: 林宥樺
You-Hua Lin
論文名稱: 毫米波雷達與 Ka 頻段衛星通訊之陣列天線設計及主動式天線OTA近場量測
Antenna Array Designs for Millimeter Wave Radars and Ka Band Satellite Communications together with OTA Near-Field Measurement Techniques for Active Antennas
指導教授: 楊成發
Cheng-Fa Yang
口試委員: 廖文照
林健維
林育正
林弘萱
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 208
中文關鍵詞: 毫米波雷達系統低軌道衛星通訊衛星通訊槽孔耦合式貼片天線圓極化主動式天線近場量測OTA量測
外文關鍵詞: Radar System, Low Earth Orbit Satellite Communications, Slot Coupled Patch Antennas, Circular Polarization, Active Antenna, Near-field Measurement, OTA Measurement
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含三項研究主題,第一部分為應用於車用雷達系統之天線設計,其中搭配德州儀器(TI)的IWR1642雷達模組,所開發陣列天線較原公版設計天線,具有較高輻射效率且較不受金屬表面製程影響之特色。第二部分探討應用於Ka頻段低軌道衛星通訊系統之陣列天線設計,其中為了降低極化偏轉的影響,乃採用圓極化設計,而為求寬頻的匹配與軸比,並選用雙饋入與槽孔耦合方式饋送至貼片天線,且提出三種連接架構來比較其效能。第三部分研發主動式天線之OTA近場量測技術,由於主動式天線自帶訊號源,因此需重建相位量測結果來獲得完整天線近場,以實測具發射源之主動式天線輻射場型。


    This thesis includes three parts. The first part is about antenna designs for applications in automotive radar systems. Those antennas are embedded on the printed circuit board and connected to TI IWR1642 chips. Compared to TI original evaluation board design, higher radiation efficiency and less influence from metal surface processing are achieved. The second part discusses array antenna designs for Low Earth Orbit (LEO) communication systems. In order to reduce losses from polarization mismatch, circularly polarized antennas are designed. Also, to achieve the wide bandwidth requirement of the LEO, dual inputs and slot coupling are proposed in the patch antennas of the arrays. For performance comparisons, three types of the feeding networks are adapted. The third part studies Over The Air (OTA) near field measurement techniques for active antennas. Because the active antennas are integrated with signal sources, phase recovering is needed for the near field measurements to obtain the radiation patterns.

    摘要 III ABSTRACT V 誌謝 VII 目錄 IX 圖目錄 XII 表目錄 XX 第壹章 緒論 1 1.1 研究背景與動機 1 1.2 概述 4 第貳章 毫米波雷達陣列天線 5 2.1 前言 5 2.2 貼片天線設計原理 7 2.3 79GHz埋入式貼片串列天線設計 9 2.3.1 板材疊構規劃 10 2.3.2 79GHz 1×5陣列天線模擬結果 16 2.3.3 金屬表面處理製程對天線影響 21 2.4 79GHz埋入式貼片天線中心式饋入陣列設計 30 2.4.1 板材疊構規劃 30 2.4.2 陣列中心之同軸穿層設計 32 2.4.3 陣列中心之功率分配器設計 37 2.4.4 1×8陣列天線設計 41 2.4.5 79GHz 1×8陣列天線模擬結果 45 2.5 79GHz天線陣列饋入之同軸連接設計 49 2.6 串列式與中心饋入式陣列天線量測與模擬比較 55 2.6.1 1×5陣列天線模擬與實測 56 2.6.2 1×8陣列天線模擬與實測 62 2.7 小結 70 第參章 KA頻段衛星通訊圓極化陣列天線設計 71 3.1 前言 71 3.2 Ka頻段圓極化陣列天線組成架構 72 3.2.1 8×8圓極化陣列天線架構 73 3.2.2 節約IC版本8×8圓極化陣列天線架構 74 3.2.3 16×16陣列天線連接架構 75 3.2.4 32×32陣列天線連接架構與三種規劃介紹 76 3.2.5 板材疊構規劃 78 3.2.6 Ka頻段低損耗同軸電纜跳線與板材走線比較 80 3.3 Ka頻段圓極化天線單元設計 83 3.4 Ka頻段圓極化天線陣列分配電路設計 92 3.4.1 一分八功率分配器設計 93 3.4.2 同軸穿層設計 100 3.4.3 一分十六功率分配器設計 109 3.4.4 一分三十二功率分配器設計 112 3.5 圓極化陣列天線模擬結果 115 3.5.1 8×8 圓極化陣列天線模擬結果 115 3.5.2 16×8 圓極化陣列天線模擬結果 122 3.5.3 32×4 圓極化陣列天線模擬結果 131 3.6 Ka頻段混合耦合器設計 138 3.6.1 理想傳輸線電路設計與模擬 139 3.6.2 電路板電路設計 144 3.7 小結 149 第肆章 主動式天線OTA近場量測技術 150 4.1 前言 150 4.2 天線量測基本原理 152 4.2.1 遠場量測 155 4.2.2 近場量測 157 4.2.3 特殊型近場量測 159 4.2.4 系統性OTA量測 159 4.3 主動式天線OTA近場量測 160 4.4 主動式天線OTA近場量測結果驗證 162 4.4.1 傳導模式結果比對 163 4.4.2 量測系統內部環境修正 167 4.4.3 非傳導式結果比對 171 4.5 小結與未來進展 179 第伍章 結論 180 參考文獻 181

    [1] Taiwan Mobile
    https://corp.taiwanmobile.com/press-release/news/press_20211022_882781.html
    [2] Anritsu, https://www.anritsu.com/zh-TW/about-anritsu?homelink=shortcut%20 (January 17, 2022)
    [3] Qualcomm Technologies, Inc., FCC vote will pave the path for 5G advancements to mobilize mmWave, July 2016.
    https://www.qualcomm.com/news/onq/2016/07/12/upcoming-fcc-vote-will-pave-path-5g-advancements-mobilize-mmwave (January 17, 2022)
    [4] 行政院公報資訊網 交通建設篇
    https://gazette.nat.gov.tw/EG_FileManager/eguploadpub/eg026205/ch06/type1/gov50/num14/images/Eg01.pdf (January 17, 2022)
    [5] Kawasaki
    https://www.kawasaki.eu/en/products/Sport_Tourer/2022/Ninja_H2_SX_SE/overview?Uid=07E3Dl5eDQ1fXlFYUVkOXFtQX1ENXl9aW1hZWFgOUFpYDF4 (January 17, 2022)
    [6] U. Yoshihide, Y. Hiroaki, S. Masayoshi, F. Masahiko, Y. Toshiki , “Compact and High-performance Millimeter-wave Antennas,” Fujitsu Ten Technical Journal, NO.36, 2011
    [7] D.M. Pozar, Microwave Engineering, 4rd edition, John Wiley & Sons, Nov. 2011.
    [8] 李佳哲,「高速光電連接器與毫米波雷達天線及饋入架構之設計」,國立臺
    灣科技大學,中華民國 109 年 7 月。
    [9] 許容賓,「下世代 USB 高速連接器與毫米波連接器設計」,國立臺
    灣科技大學,中華民國 110 年 7 月。
    [10] Iulian Rosu, YO3DAC / VA3IUL, “Microstrip, Stripline, CPW, and SIW Design,” https://www.qsl.net/va3iul/ (January 17, 2022)
    [11] Chen-Pang Chao, Shang-Hung Yang, Chiu-Ming Tung, Chang-Fa Yang, Wen-Hsiung Lin, Chun-Yi Chai, Ike Lin, “A Series-fed Cavity-back Patch Array Antenna for a Miniaturized 77GHz Radar Module,” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, USA.
    [12] Baolong Jian, Jing Yuan, Qiqin Liu, “Procedure to Design a Series-fed Microstrip Patch Antenna Array for 77 GHz Automotive Radar,” 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference
    [13] Sohini Sengupta, David R. Jackson, and Stuart A. Long, “A Method for Analyzing a Linear Series-Fed Rectangular Microstrip Antenna Array,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 63, NO. 8, AUGUST 2015
    [14] Sohini Sengupta, David R. Jackson, and Stuart A. Long, “A Method for Analysis of a Linear Series-Fed Rectangular Microstrip Antenna Array,” IEEE Transactions on Antennas and Propagation, VOL. 63, AUGUST 2015
    [15] Z. Chen and S. Otto, “A Taper Optimization for Pattern Synthesis of Microstrip Series-Fed Patch Array Antennas,” Proceedings of the 2nd European Wireless Technology Conference, Sept., 2009
    [16] YI Chong and DOU Wenbin, “Microstrip Series Fed Antenna Array for Millimeter Wave Automotive Radar Applications,” 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications
    [17] Texas Instrument, “IWR1642 Single-Chip 76- to 81-GHz mmWave Sensor's Data sheet,” https://www.ti.com/lit/ds/symlink/iwr1642.pdf?ts=1642338974015&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FIWR1642 (January 17, 2022)
    [18] 李莉娥,「PCB 製作 設計規範手冊 Ver.8.2」,國研院半導體中心,中華民國110年4月。
    [19] Christopher Mims, The Wall Street Journal
    https://cn.wsj.com/articles/%E8%A1%9B%E6%98%9F%E4%BA%92%E8%81%AF%E7%B6%B2%E5%A4%A7%E6%88%B0%EF%BC%9A%E9%A6%AC%E6%96%AF%E5%85%8B%E3%80%81%E4%BA%9E%E9%A6%AC%E9%81%9C%E6%AD%A3%E6%90%B6%E8%91%97%E5%9C%A8%E4%BD%A0%E5%AE%B6%E5%BE%8C%E9%99%A2%E8%A3%9D%E9%8D%8B-11617754812?tesla=y (January 17, 2022)
    [20] H. Al-Saedi, W. M. Abdel-Wahab, S. Gigoyan, R. Mittra and S. Safavi-Naeini,
    “Ka-Band Antenna With High Circular Polarization Purity and Wide AR
    Beamwidth,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 9, pp.
    1697-1701, Sept. 2018, doi: 10.1109/LAWP.2018.2864172.
    [21] J. Wu, Y. J. Cheng and Y. Fan, “Millimeter-Wave Wideband High-Efficiency
    Circularly Polarized Planar Array Antenna,” IEEE Transactions on Antennas and
    Propagation, VOL. 64, NO. 2 , FEBRUARY, 2016
    [22] Rohde & Schwarz,「毫米波波束成形天線陣列設計特性白皮書(II)」。
    [23] Hui Liu, Chenyang Meng, Yiming Zhang, Yuxin Lin and Sailing He, “A Broadband Power Divider with 90 Degree Phase Shifter,” 2019 PhotonIcs & Electromagnetics Research Symposium-Fall (PIERS-FALL), Xiamen, China, 17–20 December
    [24] Shao Yong Zheng, Student Member, Wing Shing Chan, Member, and Kim Fung Man, Fellow, “Broadband Phase Shifter Using Loaded Transmission Line,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 20, NO. 9, SEPTEMBER 2010
    [25] Ruying Sun, Qinghu Chen, Rongcang Han, and Zhongliang Lu, “Analysis and Design of Wideband 90◦ Microstrip Hybrid Coupler,” IEEE Access, 2019.
    [26] 羅登郁,「毫米波雷達與 Ka頻段衛星通訊之 陣列天線設計和傳播分析」,國立臺灣科技大學,中華民國 110 年 7 月。
    [27] FETNET, 5G頻率政策與產業發展白皮書
    https://www.fetnet.net/5G/assets/pdf/5G_whitepapper.pdf (January 17, 2022)
    [28] Brett T. Walkenhorst, “Test Environments for 5G Millimeter-Wave Devices,” NSI-MI Technologies
    [29] 3GPP, “3GPP TS 38.141-2 version 16.4.0 Release 16,” ETSI TS 138 141-2 V16.4.0 (2020-07)
    [30] SciELO, “Near-field analysis and field transformation applied to a parabolic profile at 5 GHz,”
    http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2019000300268 (January 17, 2022)
    [31] Cheng-Yu Ho, Ming-Fong Jhong, Po-Chih Pan, Chih-Yi Huang, Chen-Chao Wang, and Chun-Yen Ting, “Integrated Antenna-in-Package on Low-Cost Organic Substrate for Millimeter-Wave Wireless Communication Applications,” 2017 IEEE 67th Electronic Components and Technology Conference.
    [32] NSI-MI, Compact Range Systems
    https://www.nsi-mi.com/products/system-solutions/compact-range-systems (January 17, 2022)
    [33] Member, IEEE, Zhu Wen, Ya Jing, and Michael Yau, “Over-the-Air Test: A New OTA RF Performance Test Method for 5G Massive MIMO Devices, Hongwei Kong,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 67, NO. 7, JULY 2019
    [34] Corbett Rowell, Adam Tankielun, “Plane Wave Converter for 5G Massive MIMO Basestation Measurements,” OTA & Antenna Measurement Solutions, Rohde & Schwarz, Munich, Germany

    無法下載圖示 全文公開日期 2027/02/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE