簡易檢索 / 詳目顯示

研究生: 周冠宇
Guan-Yu Zhou
論文名稱: 整合中長距離之平肩輻射場型毫米波天線陣列之研究
A Study of Flat-Shoulder Radiation Pattern for Integrated Long-/Medium-Range Millimeter Wave Antenna Array
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 陳筱青
Hsiao-Chin Chen
廖文照
Wen-Jiao Liao
馬自莊
Tzyh-Ghuang Ma
陳晏笙
yschen@ntut.edu.tw
楊成發
Chang-Fa Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 110
中文關鍵詞: 演算法天線陣列基板合成波導車用雷達天線功率分配網絡功率分配器
外文關鍵詞: algorithm, antenna array, substrate composite waveguide, vehicle radar antenna, power distribution network, power divider
相關次數: 點閱:235下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究主題為「集成中長距離之平肩輻射場型毫米波天線陣列之研究」。
    有別於傳統的車用雷達分別由一組長距離雷達場景及中距離雷達場景之間來回切換操作模式,本論文提出一種具有平肩輻射場型之特殊陣列天線以同時滿足中長距離雷達應用的發射天線,除了能有效地節省整體天線的面積外,同時也能夠降低後台晶片控制中遠距離場景切換的負擔。
      論文主體將分為兩個主要部分,第一部分將詳細介紹如何透過天線陣列之原理以進行優化演算法,本文採用的「甲蟲天線演算法」具有收斂速度快速、實現容易及透過合理的步長避免陷入局部最優解等優勢,為適當的簡化優化流程,將會解說如何定義包含功率振福、天線間距、相位等各項所需變數,並且根據陣列理論得出目標輻射場型之公式。為了達成此一目標場型,需先設計一1x16單元陣列後進行全波模擬得到其輻射場型,再帶入到陣列因數當中求得整體陣列場型以進行優化。
      第二部分為第一部分之接續,由優化後所得到的各項變數以設計饋入天線之前端功率分配網路,由於工作頻率有別於以往24GHz的車用天線,提升到毫米波頻段時,微帶技術之饋電網絡將產生嚴重的輻射損耗,所以本文採用一種已被廣泛研究且具有低製造成本、低輻射損耗及高集成密度設計等優勢的基板集成波導(SIW)技術,最終與陣列天線整合實現應用於77GHz之中長距離天線陣列。
      本論文將詳細闡述此一研究主題,包含研究動機、單元陣列設計、演算法優化流程及功率分配網絡設計,並將模擬與實際量測結果做詳細對比以證實其差異或一致性。


    The research topic of this dissertation is "A Study of Flat-Shoulder Radiation Pattern for Integrated Long-/Medium-Range Millimeter Wave Antenna Array". Different from the traditional vehicle radar, which switches back and forth between a set of long-range radar scenarios and medium-range radar scenarios, this paper proposes a special array antenna with a flat-shoulder radiation pattern to meet the requirements of medium- and long-range radar applications at the same time. In addition to effectively saving the area of the overall antenna, the transmitting antenna can also reduce the burden of long-distance scene switching in background chip control. The main body of the paper will be divided into two main parts. The first part will introduce in detail how to optimize the algorithm through the principle of the antenna array. The "Beetle Antenna Algorithm" used in this paper has the advantages of fast convergence speed, easy implementation and avoidance through reasonable step size. In order to properly simplify the optimization process, it will explain how to define the required variables including power vibration, antenna spacing, phase, etc., and obtain the formula of the target radiation pattern according to the array theory. In order to achieve this target pattern, it is necessary to design a 1x16 element array first, then perform full-wave simulation to obtain its radiation pattern, and then bring it into the array factor to obtain the overall array pattern for optimization. The second part is the continuation of the first part. The variables obtained after optimization are used to design the front-end power distribution network of the feeding antenna. Since the operating frequency is different from the previous 24GHz vehicle antenna, when it is upgraded to the millimeter wave frequency band, The feeding network of microstrip technology will produce serious radiation loss, so this paper adopts a substrate-integrated waveguide (SIW) technology that has been widely studied and has the advantages of low manufacturing cost, low radiation loss and high integration density design. Antenna integration realizes application in 77GHz medium and long distance antenna array. This paper will elaborate on this research topic, including research motivation, cell array design, algorithm optimization process and power distribution network design, and will compare the simulation and actual measurement results in detail to confirm their differences or consistency.

    誌謝 I 摘要 V Abstract V 目錄 IX 圖目錄 IX 表目錄 XIV 第一章 緒論 0 1.1研究動機 0 1.2文獻探討 0 1.3研究貢獻 3 1.4論文組織 5 第二章 天線陣列設計及優化 6 2.1前言 6 2.2遠程雷達和中程雷達應用之天線概念 6 2.3平肩輻射場型之陣列天線配置&設計 8 2.3.1陣列合成 8 2.3.21x16單元陣列天線 10 2.4甲蟲觸鬚演算法 15 2.5天線陣列優化 18 2.6結語 18 第三章 SIW功率分配網絡設計 23 3.1前言 23 3.2單元陣列之天線阻抗 24 3.3 SIW設計規格 24 3.4一分八等功率分配網絡 30 3.5 SIW轉微帶線之轉接&相移設計 44 3.5.1一分八等功率分配網絡 44 3.5.2一分八等功率分配網絡 47 3.6 SIW轉微帶線之轉接&相移設計 44 第四章 天線陣列及功率分配網絡整合 56 4.1前言 56 4.2天線陣列及功率分配網絡整合 56 4.3量測架構與模擬比較 69 4.4結語 85 第五章 結論 86 5.1總結 87 5.2未來展望 88 參考文獻 89

    [1] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel and C. Waldschmidt, "Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 845-860, March 2012
    [2] W. Menzel and A. Moebius, "Antenna Concepts for Millimeter-Wave Automotive Radar Sensors," Proceedings of the IEEE, vol. 100, no. 7, pp. 2372-2379, July 2012
    [3] D. -H. Shin, K. -B. Kim, J. -G. Kim and S. -O. Park, "Design of Null-Filling Antenna for Automotive Radar Using the Genetic Algorithm," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 738-741, 2014
    [4] B. Ku et al., "A 77–81-GHz 16-Element Phased-Array Receiver With ±50° Beam Scanning for Advanced Automotive Radars," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2823-2832, Nov. 2014
    [5] M. Mosalanejad, I. Ocket, C. Soens and G. A. E. Vandenbosch, "Wideband Compact Comb-Line Antenna Array for 79 GHz Automotive Radar Applications," IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 9, pp. 1580-1583, Sept. 2018
    [6] Y. Hayashi, K. Sakakibara, M. Nanjo, S. Sugawa, N. Kikuma and H. Hirayama, "Millimeter-Wave Microstrip Comb-Line Antenna Using Reflection-Canceling Slit Structure," IEEE Transactions on Antennas and Propagation, vol. 59, no. 2, pp. 398-406, Feb. 2011
    [7] F. D. L. Peters, S. O. Tatu and T. A. Denidni, "Design of beamforming slot antenna arrays using substrate integrated waveguide," IEEE International Symposium on Antennas and Propagation, 2012
    [8] B. G. Porter, L. L. Rauth, J. R. Mura and S. S. Gearhart, "Dual-polarized slot-coupled patch antennas on Duroid with teflon lenses for 76.5-GHz automotive radar systems," IEEE Transactions on Antennas and Propagation, vol. 47, no. 12, pp. 1836-1842, Dec. 1999
    [9] B. Schoenlinner, Xidong Wu, J. P. Ebling, G. V. Eleftheriades and G. M. Rebeiz, "Wide-scan spherical-lens antennas for automotive radars," IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 9, pp. 2166-2175, Sept. 2002, doi: 10.1109/TMTT.2002.802331.
    [10] W. Menzel, D. Pilz and M. Al-Tikriti, "Millimeter-wave folded reflector antennas with high gain, low loss, and low profile," IEEE Antennas and Propagation Magazine, vol. 44, no. 3, pp. 24-29, June 2002
    [11] S. B. Yeap, X. Qing and Z. N. Chen, "77-GHz Dual-Layer Transmit-Array for Automotive Radar Applications," IEEE Transactions on Antennas and Propagation, vol. 63, no. 6, pp. 2833-2837, June 2015
    [12] M. Schneider, "Automotive radar-Status and trends, " in Proc. German Microw. Conf., 2005, pp. 144-147.
    [13] H. Wang, D. Fang, B. Zhang and W. Che, "Dielectric Loaded Substrate Integrated Waveguide (SIW) H-Plane Horn Antennas," in IEEE Transactions on Antennas and Propagation, vol. 58, no. 3, pp. 640-647, March 2010
    [14] M. Esquius-Morote, B. Fuchs, J. Zürcher and J. R. Mosig, "Novel Thin and Compact H-Plane SIW Horn Antenna," in IEEE Transactions on Antennas and Propagation, vol. 61, no. 6, pp. 2911-2920, June 2013
    [15] Y. Zhao, Z. Shen and W. Wu, "Wideband and Low-Profile H-Plane Ridged SIW Horn Antenna Mounted on a Large Conducting Plane," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 11, pp. 5895-5900, Nov. 2014
    [16] S. E. Hosseininejad and N. Komjani, "Optimum Design of Traveling-Wave SIW Slot Array Antennas," in IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1971-1975, April 2013
    [17] G. Q. Luo, Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun and J. F. Zheng, "Bandwidth-Enhanced Low-Profile Cavity-Backed Slot Antenna by Using Hybrid SIW Cavity Modes," in IEEE Transactions on Antennas and Propagation, vol. 60, no. 4, pp. 1698-1704, April 2012
    [18] D. V. Navarro, L. F. Carrera and M. Baquero, "A SIW slot array antenna in Ku band," Proceedings of the Fourth European Conference on Antennas and Propagation, 2010
    [19] J. Liu, D. R. Jackson and Y. Long, "Substrate Integrated Waveguide (SIW) Leaky-Wave Antenna With Transverse Slots," in IEEE Transactions on Antennas and Propagation, vol. 60, no. 1, pp. 20-29, Jan. 2012
    [20] Li Yan, W. Hong, Guang Hua, Jixin Chen, K. Wu and Tie Jun Cui, "Simulation and experiment on SIW slot array antennas," in IEEE Microwave and Wireless Components Letters, vol. 14, no. 9, pp. 446-448, Sept. 2004
    [21] ZhargCheng Hao, W. Hong, Hao Li, Hua Zhang and K. Wu, "Multiway broadband substrate integrated waveguide (SIW) power divider," 2005 IEEE Antennas and Propagation Society International Symposium, 2005, pp. 639-642
    [22] S. Germain, D. Deslandes and K. Wu, "Development of substrate integrated waveguide power dividers," CCECE 2003 - Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436), 2003, pp. 1921-1924
    [23] S. Datta, S. Mukherjee and A. Biswas, "Design of broadband power divider based on Substrate-Integrated Waveguide technology," 2013 IEEE Applied Electromagnetics Conference (AEMC), 2013, pp. 1-2
    [24] Y. M. Huang et al., "Substrate-Integrated Waveguide Power Combiner/Divider Incorporating Absorbing Material," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 10, pp. 885-887, Oct. 2017
    [25] J. Xu, W. Hong, H. Zhang and Y. Yu, "Design and measurement of array antennas for 77GHz automotive radar application," 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), 2017, pp. 1-4
    [26] J. Xu, W. Hong, H. Zhang, G. Wang, Y. Yu and Z. H. Jiang, "An Array Antenna for Both Long- and Medium-Range 77 GHz Automotive Radar Applications," in IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 7207-7216, Dec. 2017
    [27] Y. Yu, W. Hong, H. Zhang, J. Xu and Z. H. Jiang, "Optimization and Implementation of SIW Slot Array for Both Medium- and Long-Range 77 GHz Automotive Radar Application," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3769-3774, July 2018
    [28] Jiang, X., and S. Li. "BAS: Beetle Antennae Search Algorithm for Optimization Problems. 2017." CoRR arXiv
    [29] Wang, Jiangyu, and Huanxin Chen. "BSAS: Beetle swarm antennae search algorithm for optimization problems." arXiv preprint arXiv
    [30] Jiang, Xiangyuan, and Shuai Li. "Beetle antennae search without parameter tuning (BAS-WPT) for multi-objective optimization." arXiv preprint arXiv
    [31] A. H. Khan, X. Cao, S. Li, V. N. Katsikis and L. Liao, "BAS-ADAM: an ADAM based approach to improve the performance of beetle antennae search optimizer," in IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 461-471, March 2020
    [32] X. Chen, K. Wu, L. Han and F. He, "Low-Cost High Gain Planar Antenna Array for 60-GHz Band Applications," in IEEE Transactions on Antennas and Propagation, vol. 58, no. 6, pp. 2126-2129, June 2010
    [33] I. Boudreau, K. Wu and D. Deslandes, "Broadband phase shifter using air holes in Substrate Integrated Waveguide," 2011 IEEE MTT-S International Microwave Symposium, 2011, pp. 1-4
    [34] Y. J. Cheng, W. Hong and K. Wu, "Broadband Self-Compensating Phase Shifter Combining Delay Line and Equal-Length Unequal-Width Phaser," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 203-210, Jan. 2010
    [35] Sellal, K., et al. "Design and implementation of a substrate integrated waveguide phase shifter." IET Microwaves, Antennas & Propagation 2.2 (2008): 194-199.
    [36] Yang, Tao, Mauro Ettorre, and Ronan Sauleau. "Novel phase shifter design based on substrate-integrated-waveguide technology." IEEE microwave and wireless components letters 22.10 (2012)
    [37] J. E. Rayas-Sanchez and V. Gutierrez-Ayala, "A general EM-based design procedure for single-layer substrate integrated waveguide interconnects with microstrip transitions," 2008 IEEE MTT-S International Microwave Symposium Digest, 2008, pp. 983-986
    [38] K. Wu, D. Deslandes and Y. Cassivi, "The substrate integrated circuits - a new concept for high-frequency electronics and optoelectronics," 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003., 2003, pp. P-III
    [39] S. Dai, M. Li, Q. H. Abbasi and M. A. Imran, "A Zero Placement Algorithm for Synthesis of Flat Top Beam Pattern With Low Sidelobe Level," in IEEE Access, vol. 8, pp. 225935-225944, 2020

    無法下載圖示 全文公開日期 2025/08/22 (校內網路)
    全文公開日期 2032/08/22 (校外網路)
    全文公開日期 2032/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE