簡易檢索 / 詳目顯示

研究生: 邱翔郁
Hsiang-Yu Chiu
論文名稱: 無鉛銲料與磷青銅(C5191)液-固界面反應之研究
Liquid-Solid Interfacial Reactions between Lead-free Solders and Phosphor bronze (C5191)
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 吳子嘉
Albert T. Wu
陳志銘
Chih-Ming Chen
梁鍵隴
Chien-Lung Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 66
中文關鍵詞: 磷青銅合金無鉛銲料界面反應介金屬化合物
外文關鍵詞: C5191, Lead-Free Solder, Interfacial Reaction, IMC
相關次數: 點閱:418下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在第二層電子構裝產業中,常使用Cu來當作導線架的材料,而本研究在Cu中添加微量Sn、P元素,形成Cu-6.01wt.% Sn-0.12wt.%P之C5191磷青銅合金,磷青銅合金具有高的強度、耐應力腐蝕,高耐熱等特性,常廣泛應用於電機材料,接著端子。無鉛銲料在IC封裝中也扮演著重要的角色,目前最常使用的無鉛銲料大多都以純Sn為基底,並添加Cu、Ag、Zn 等微量元素之合金銲料。本研究選用:Sn、Sn-3.0wt.%Ag-0.5wt.%Cu 與 Sn-0.7wt.%Cu三種無鉛銲料,與C5191合金基材以液體/固體反應偶形式於反應溫度240、255、270°C下反應0.5至10 h,探討其界面反應,並利用掃描式電子顯微鏡並搭配掃描式電子顯微鏡/能量分散光譜儀來觀察其介金屬相的型態變化與生成之的種類。
研究結果顯示,在240°C、255°C、270°C下反應0.5-10 h,Sn/C5191、SAC/C5191、SC/C5191反應偶界面皆會生成扇貝狀的Cu6Sn5相及層狀的Cu3Sn,隨著時間和溫度的增加,介金屬相(IMC)的厚度也會逐漸增加。
本研究中,此三個系統之介金屬相厚度與反應時間之平方根呈線性關係,探討反應機制可發現其皆為擴散控制所主導。


In the second-layer electronic packaging industry, Cu is often used as the material of the lead frame. In this study, trace elements of Sn and P were added to Cu to form C5191, phosphor bronze alloy(Cu-6.01wt.% Sn-0.12wt.%P). Phosphor bronze alloy has high strength, stress corrosion resistance, high heat resistance and other characteristics, and is often widely used in motor materials and terminals. Lead-free solder also plays an important role in IC packaging. Most lead-free solders are commonly based on pure Sn, and trace elements such as Cu, Ag, and Zn are added. In this study, three kinds of lead-free solders: Sn, Sn-3.0wt.%Ag-0.5wt.%Cu and Sn-0.7wt.%Cu were selected, and they were reacted with C5191 alloy substrate in the form of liquid/solid reaction couple at 240, 255, 270°C three temperatures, and the time from 0.5 to 10 h to investigate the interfacial reaction. We use SEM to observe the surface morphology, and investigate the composition of the IMCs by SEM/EDS and EPMA.
The study results show that the reaction at 240°C, 255°C, and 270°C for 0.5-10 h, Sn/C5191, SAC/C5191, and SC/C5191 reaction couple interfaces will all form scalloped Cu6Sn5 and layered Cu3Sn phase. With the increasing times and temperatures, the thickness of the intermetallic phase (IMC) will gradually increase.
In this study, the thickness of the intermetallic phase in three systems has a linear relationship with the square root of the reaction time, and the reaction mechanism reveals that they are all dominated by diffusion controlled.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章、前言 1 第二章、文獻回顧 3 2-1 電子購裝技術 3 2-1-2導線架與導線架封裝 5 2-2 無鉛銲料 7 2-2-1 純錫(Sn) 9 2-2-2 Sn-3.0. Ag -0.5wt.% Cu (SAC) 10 2-2-3 Sn-0.7wt.% Cu (SC) 12 2-3 界面反應動力學 13 2-3-1界面反應理論 13 2-3-2擴散理論 15 2-4 Kirkendall Void 17 2-5焊料基材界面反應之相關文獻 18 2-5-1 Sn/Cu界面反應 18 2-5-2 Sn-3.0Ag-0.5Cu/Cu界面反應 21 2-5-3 Sn-0.7Cu/Cu界面反應 23 第三章、 實驗方法與步驟 25 3-1 C5191基材製備 25 3-2 銲料製備 25 3-3 反應偶製備 25 3-4 金相處理 26 3-5界面觀察和分析 27 3-6 機械性質分析 28 3-6-1 試片製備 28 3-6-2 推球試驗 29 第四章、 結果與討論 31 4-1純Sn銲料與C5191基材反應偶之界面反應 31 4-1-1 Sn/C5191反應偶在240oC之界面反應 31 4-1-2 Sn/C5191反應偶在255℃之界面反應 34 4-1-3 Sn/C5191反應偶在270℃之界面反應 37 4-2 SAC銲料與C5191基材反應偶之界面反應 40 4-2-1 SAC/C5191反應偶在 240oC 之界面反應 40 4-2-2 SAC/C5191反應偶在255oC之界面反應 42 4-2-3 SAC/C5191反應偶在270oC之界面反應 44 4-3 SC銲料與C5191基材反應偶之界面反應 47 4-3-1 SC/C5191反應偶在240oC之界面反應 47 4-3-2 SC/C5191反應偶在255oC之界面反應 50 4-3-3 SC/C5191反應偶在270oC之界面反應 52 4-4 反應偶之界面動力學 55 第五章、 結論 61 第六章、參考文獻 62

[1]Y. Li and C. Wong, Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications, Materials Science and Engineering: R: Reports, 51 (2006) 1-35.
[2] E. Wood and K. Nimmo, In search of new lead-free electronic solders, Journal of Electronic Materials, 23 (1994) 709-713.
[3] “WEEE Regulations” EU-Directive 96/EC, 2002.
[4] “RoHS Regulations” EU-Directive 95/EC, 2002.
[5] H. Hao, Y. Shi, Z. Xia, Y. Lei, and F. Guo, Microstructure evolution of SnAgCuEr lead-free solders under high temperature aging, Journal of Electronic Materials, 37 (2008) 2-8.
[6] K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C. Handwerker, Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys, Journal of electronic materials, 29 (2000) 1122-1136.
[7] H. Nishikawa, J.Y. Piao, and T. Takemoto, Interfacial reaction between Sn-0.7 Cu (-Ni) solder and Cu substrate, Journal of Electronic Materials, 35 (2006) 1127-1132.
[8] A.Rahn,The Basics of Soldering.1993, John Wiely & Sons:New York.
[9] K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, and K.-N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability, Journal of applied physics, 97 (2005) 024508.
[10] V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, and J.K. Kivilahti, Solid-state reactions between Cu (Ni) alloys and Sn, Journal of Electronic Materials, 36 (2007) 1355-1362.
[11] H. Nishikawa, A. Komatsu, and T. Takemoto, Interfacial reaction between Sn–Ag–Co solder and metals, Materials transactions, 46 (2005) 2394-2399.
[12] Y. Wang, Y. Lin, C. Tu, and C. Kao, Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu, Journal of alloys and compounds, 478 (2009) 121-127.
[13] J.-S. Chang and Y.-W. Yen. Investigation of the interfacial reactions and mechanical strength in the Sn-Ag-Cu (SAC)/Cu-Be alloy (Alloy 25) couple. in 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC). 2018. IEEE.
[14] X.-B. Hu, J. Wen, and Y.-W. Yen. Interfacial reactions in the Sn-3.0 Ag-0.5 Cu/C194 couples. in 2022 International Conference on Electronics Packaging (ICEP). 2022. IEEE.
[15] Chung, D.D., Materials for electronic packaging. 1995: Elsevier.
[16] E.J. Rymaszewski, R.R. Tummala, and T. Watari, Microelectronics packaging—An overview, Microelectronics Packaging Handbook: Semiconductor Packaging, (1997) 3-128.
[17] J.E. Morris,Workshop,The Design and Processing Technology of Electronic Packaging,1997.
[18] 林定皓,「電子構裝技術概論」,台灣電路板協會,2010。.
[19] M. Abtew and G. Selvaduray, Lead-free solders in microelectronics, Materials Science and Engineering: R: Reports, 27 (2000) 95-141.
[20] K. Rahim and A. Mian, A review on laser processing in electronic and MEMS packaging, Journal of Electronic Packaging, 139 (2017)
[21] O. Van der Sluis, C. Yuan, W. van Driel, and G. Zhang, Advances in delamination modeling, Nanopackaging: nanotechnologies and electronics packaging, (2008) 61-91.
[22] R. Furuno, Y. Takatuji, K. Kubo, and T. Haruyama, Improvement of the Adhesive Strength of the Leadframe and Epoxy Resin by Forming Organic Molecules–Metal Composite Interface, Electronics and Communications in Japan, 100 (2017) 67-71.
[23] N.C. Lee, Getting ready for lead‐free solders, Soldering & Surface Mount Technology, (1997)
[24] L. Dorso, E. Bigot-Corbel, J. Abadie, M. Diab, S. Gouard, F. Bruchertseifer, A. Morgenstern, C. Maurel, M. Chérel, and F. Davodeau, Long-term toxicity of 213Bi-labelled BSA in mice, PLoS One, 11 (2016) e0151330.
[25] G. Genchi, M.S. Sinicropi, G. Lauria, A. Carocci, and A. Catalano, The effects of cadmium toxicity, International journal of environmental research and public health, 17 (2020) 3782.
[26] I. Karakaya and W. T. Thompson, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H.
Baker, ASM International, Materials Park, Ohio, 1987.
[27] B. Cornelius, S. Treivish, Y. Rosenthal, and M. Pecht, The phenomenon of tin pest: A review, Microelectronics Reliability, 79 (2017) 175-192.
[28] K.-N. Tu and J. Li, Spontaneous whisker growth on lead-free solder finishes, Materials Science and Engineering: A, 409 (2005) 131-139.
[29] S.K. Kang, D.-Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.-i. Cho, J. Yu, and W.K. Choi, Controlling Ag 3 Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying, Jom, 56 (2004) 34-38.
[30] F. Che, J. Luan, and X. Baraton. Effect of silver content and nickel dopant on mechanical properties of Sn-Ag-based solders. in 2008 58th Electronic Components and Technology Conference. 2008. IEEE.
[31] F. Che, W. Zhu, E.S. Poh, X. Zhang, and X. Zhang, The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures, Journal of Alloys and Compounds, 507 (2010) 215-224.
[32] H. Baker and H. Okamoto, ASM handbook. vol. 3. alloy phase diagrams, ASM International, Materials Park, Ohio 44073-0002, USA, 1992. 501, (1992)
[33] D.A. Shnawah, M.F.M. Sabri, and I.A. Badruddin, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products, Microelectronics reliability, 52 (2012) 90-99.
[34] https://www.metallurgy.nist.gov/phase/solder/solder.html.
[35] A. Abd El-Rehim, H. Zahran, and A. Yassin, Microstructure evolution and tensile creep behavior of Sn–0.7 Cu lead-free solder reinforced with ZnO nanoparticles, Journal of Materials Science: Materials in Electronics, 30 (2019) 2213-2223.
[36] H. Wang, J. Fang, Z. Xu, and X. Zhang, Improvement of Ga and Zn alloyed Sn–0.7 Cu solder alloys and joints, Journal of Materials Science: Materials in Electronics, 26 (2015) 3589-3595.
[37] G. Li, Y. Shi, H. Hao, Z. Xia, Y. Lei, and F. Guo, Effect of phosphorus element on the comprehensive properties of Sn–Cu lead-free solder, Journal of alloys and compounds, 491 (2010) 382-385.
[38] S. Fürtauer, D. Li, D. Cupid, and H. Flandorfer, The Cu–Sn phase diagram, Part I: new experimental results, Intermetallics, 34 (2013) 142-147.
[39] M. Schaefer, R.A. Fournelle, and J. Liang, Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control, Journal of electronic materials, 27 (1998) 1167-1176.
[40] S.-S. Chee and J.-H. Lee, Fabrication of Cu-Ni mixed phase layer using DC electroplating and suppression of Kirkendall voids in Sn-Ag-Cu solder joints, Electronic Materials Letters, 10 (2014) 637-644.
[41] H.-K. Cheng, C.-W. Huang, H. Lee, Y.-L. Wang, T.-F. Liu, and C.-M. Chen, Interfacial reactions between Cu and SnAgCu solder doped with minor Ni, Journal of Alloys and Compounds, 622 (2015) 529-534.
[42] J. Wang, J. Chen, L. Zhang, Z. Zhang, Y. Han, X. Hu, H. Lu, and S. Zhang, Forming mechanism and growth of Kirkendall voids of Sn/Cu joints for electronic packaging: a recent review, Journal of Advanced Joining Processes, (2022) 100125.
[43] N. Zhao, Y. Zhong, M. Huang, H. Ma, and W. Dong, Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient, Scientific reports, 5 (2015) 13491.
[44] K.-N. Tu, Interdiffusion and reaction in bimetallic Cu-Sn thin films, Acta Metallurgica, 21 (1973) 347-354.
[45] W.-m. Tang, A.-Q. He, L. Qi, and D. Ivey, Solid state interfacial reactions in electrodeposited Cu/Sn couples, Transactions of nonferrous metals society of China, 20 (2010) 90-96.
[46] R.A. Gagliano and M.E. Fine, Thickening kinetics of interfacial Cu 6 Sn 5 and Cu 3 Sn layers during reaction of liquid tin with solid copper, Journal of electronic materials, 32 (2003) 1441-1447.
[47] S. Bader, W. Gust, and H. Hieber, Rapid formation of intermetallic compounds interdiffusion in the Cu Sn and Ni Sn systems, Acta metallurgica et materialia, 43 (1995) 329-337.
[48] 鍾承翰,銅-錫系統生成介金屬中主要擴散元素之研究,碩士論文,2007。.
[49] L.M. Lee and A.A. Mohamad, Interfacial reaction of Sn-Ag-Cu lead-free solder alloy on Cu: A review, Advances in Materials Science and Engineering, 2013 (2013)
[50] K. Kim, S. Huh, and K. Suganuma, Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints, Journal of Alloys and compounds, 352 (2003) 226-236.
[51] W. Peng, E. Monlevade, and M.E. Marques, Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu, Microelectronics Reliability, 47 (2007) 2161-2168.
[52] T. Lu, D. Yi, H. Wang, X. Tu, and B. Wang, Microstructure, mechanical properties, and interfacial reaction with Cu substrate of Zr-modified SAC305 solder alloy, Journal of alloys and compounds, 781 (2019) 633-643.
[53] M.F. Arenas and V.L. Acoff, Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates, Journal of Electronic Materials, 33 (2004) 1452-1458.
[54] X. Hu, Y. Li, Y. Liu, and Z. Min, Developments of high strength Bi-containing Sn0. 7Cu lead-free solder alloys prepared by directional solidification, Journal of Alloys and Compounds, 625 (2015) 241-250.
[55] H. Ma, J. Wang, L. Qu, L. An, L. Gu, and M. Huang. The study on the rapidly-solidified Sn-0.7 Cu lead-free solders and the interface reactions with Cu substrate. in 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging. 2012. IEEE.
[56] K.-S. Bae and S.-J. Kim, Microstructure and adhesion properties of Sn–0.7 Cu/Cu solder joints, Journal of materials research, 17 (2002) 743-746.
[57] X.C. Xie, X.C. Zhao, Y. Liu, J.W. Cheng, B. Zheng, and Y. Gu. Effect of Ag addition on growth of the interfacial intermetallic compounds between Sn-0.7 Cu solder and Cu substrate. in Materials Science Forum. 2015. Trans Tech Publ.
[58] 張景勛,無鉛銲料與銅-鈹合金(合金25)界面反應之研究,材料科學與工程系.2018,國立臺灣科技大學: 台北市. p.104.
[59] J. Li, P. Agyakwa, and C. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process, Acta materialia, 59 (2011) 1198-1211.
[60] T. Laurila, V. Vuorinen, and J. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Materials Science and Engineering: R: Reports, 49 (2005) 1-60.
[61] H. Shao, A. Wu, Y. Bao, Y. Zhao, and G. Zou, Interfacial reaction and mechanical properties for Cu/Sn/Ag system low temperature transient liquid phase bonding, Journal of Materials Science: Materials in Electronics, 27 (2016) 4839-4848.
[62] C. Ho, R. Tsai, Y. Lin, and C. Kao, Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni, Journal of Electronic Materials, 31 (2002) 584-590.
[63] D. Mu, J. Read, Y. Yang, and K. Nogita, Thermal expansion of Cu6Sn5 and (Cu, Ni) 6Sn5, Journal of Materials Research, 26 (2011) 2660-2664.
[64] M. Yang, H. Ji, S. Wang, Y.-H. Ko, C.-W. Lee, J. Wu, and M. Li, Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrates during soldering, Journal of Alloys and Compounds, 679 (2016) 18-25.
[65] S.K. Kang, D.-Y. Shih, N. Donald, W. Henderson, T. Gosselin, A. Sarkhel, N. Charles Goldsmith, K.J. Puttlitz, and W.K. Choi, Ag 3 Sn plate formation in the solidification of near-ternary eutectic Sn-Ag-Cu, JOM, 55 (2003) 61-65.
[66] T. An and F. Qin, Intergranular cracking simulation of the intermetallic compound layer in solder joints, Computational materials science, 79 (2013) 1-14.
[67] S. Tian, J. Zhou, F. Xue, R. Cao, and F. Wang, Microstructure, interfacial reactions and mechanical properties of Co/Sn/Co and Cu/Sn/Cu joints produced by transient liquid phase bonding, Journal of Materials Science: Materials in Electronics, 29 (2018) 16388-16400.
[68] S. Chang, L. Tsao, M. Wu, and C. Chen, The morphology and kinetic evolution of intermetallic compounds at Sn–Ag–Cu solder/Cu and Sn–Ag–Cu-0.5 Al 2 O 3 composite solder/Cu interface during soldering reaction, Journal of Materials Science: Materials in Electronics, 23 (2012) 100-107.
[69] N. Dariavach, P. Callahan, J. Liang, and R. Fournelle, Intermetallic growth kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates, Journal of Electronic Materials, 35 (2006) 1581-1592.

QR CODE