簡易檢索 / 詳目顯示

研究生: 李柏毅
Bo-Yi Lee
論文名稱: Ge-Sn及Ge-Sb異質結構奈米線及GeSe2奈米材料合成與電性量測之研究
Synthesis and Electrical Properties of Ge-Sn, Ge-Sb Heterostructure Nanowires and GeSe2 Nanomaterials
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 葉炳宏
Ping-Hung Yeh
蔡孟霖
Meng-Lin Tsai
周苡嘉
Yi-Chia Chou
楊承山
Chan-Shan Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 145
中文關鍵詞: 鍺錫鍺銻二硒化鍺陽極氧化鋁退火氣液固成長法
外文關鍵詞: Ge-Sn, Ge-Sb, GeSe2, AAO, annealing, vapor-liquid-solid (VLS) growth method
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文材料有三種,分別是Ge-Sn異質結構奈米線, Ge-Sb異質結構奈米線和GeSe2奈米材料,進行生長及元件的製程並探討對應電性表現。
    第一部分為Ge-Sn異質結構奈米線,使用AAO並以壓力鑄造法,將焠火過的Ge0.2Sn0.8塊材在700度下加熱融化注入AAO,將成品在400度退火24小時後,以鉻酸溶液蝕刻後獲得Ge-Sn異質結構奈米線。藉由SEM影像觀察與EDS元素分析,奈米線有明暗對比區域進行組份分析後,觀察到接近直徑100 nm無扭曲且長度落在2-3 µm的Ge-Sn異質結構奈米線,進而製作場效電晶體並以鎳作為電極進行量測。根據電性量測結果與能帶圖比較,發現其性質為歐姆接觸,且發現Ge-Sn異質結構奈米線在高電壓的情況下載子遷移率為0.051(cm2/(V*s)。重複的高電壓量測下,容易產生熱能導致焦耳熱效益的產生影響元件的發揮,且異質結構的隨機性很大程度的影響製程元件量測的結果。
    第二部分為Ge-Sb異質結構奈米線,以莫耳百分比7:3(銻:鍺),980度下融煉1小時後焠火形成GeSb塊材。運用AAO配合壓鑄系統將GeSb塊材融化注入AAO中,將其以300度持續24小時的退火程序後使用鉻酸溶液蝕刻外層AAO後獲得Ge-Sb異質結構奈米線。透過SEM觀測可知其長度大約為3-4 µm。將鍍鎳電極的元件進行量測後與能帶圖比較後,得知為p-type 蕭特基接觸性質,由於在Ge0.175Sb0.825有共晶相的情形下分節情形並沒有Ge-Sn好且有隨機性的情況下,所以在量測部分的SEM影像看不出有明顯明暗對比。但在Id-Vg量測中,閘極電壓小的時候可獲得展現不錯的載子遷移率為1.24x10-2 (cm2/(V*s)。
    第三部分為GeSe2奈米線及奈米帶,將Ge錠與Se粉末與作為基板鍍金的氧化鋯以真空幫浦抽真空,封入石英管中並放置於加熱爐中成長。改變溫度、前驅物(Ge與Se)克數,成核區 (2-2.5 cm)、過渡區 (3-3.5 cm)、成長區 (4-4.5 cm)基板之不同區域及成長時間等參數進行調整與比較。在0.02克Ge與0.01克Se在450度下成長1.5小時成長區,得到肉眼觀察基板上產物為黃色,筆直較無彎曲的奈米線,厚度為40-50 nm的奈米片並在EDS元素分析下成分為GeSe2。將GeSe2奈米線及奈米帶製備為場效電晶體,分別鍍鎳及鈦鎳電極進行量測。退火後鍍鎳電極(250 nm)的元件,奈米線的電阻率為0.0057 Ω·cm且載子遷移率高達2.37x104 (cm2/(V*s))且未退火的Ti/Ni (20 nm/ 230 nm)電極也展現9.54x10-2 (cm2/(V*s))載子遷移率。由於退火後之元件測量可能導致鎳電極擴散進入GeSe2中影響電性,目前尚需再現性來證明退火後的GeSe2的極高載子遷移率。在SEM的觀察下,退火後的鈦/鎳電極材料會因GeSe2對熱的不穩定性而導致電極端會融化且蓋在電極上的材料也會因受熱而產生變形,鎳電極的元件也有相同熱不穩定的情況。針對熱不穩定的情況,在後續的元件量測中將退火溫度慢慢下降並做量測後發現400度對GeSe2來說非常容易損壞元件且IdVg的量測會有很大的雜訊。將退火溫度下降至350度在Ni電極進行IdVd量測後元件即毀損,表示溫度還是過高導致無法後續量測。在320度時IdVg量測並無明顯的開關比,不過元件不會因為多次量測而直接毀損,在後續的電性量測中320度與330度的退火溫度是對量測較佳的參數。


    In this thesis, Ge-Sn heterostructure nanowires, Ge-Sb heterostructure nanowires, and GeSe2 nanomaterials were used to grow and fabricate a series of devices and investigate the electrical properties.
    In the first part, Ge-Sn heterostructure nanowires were obtained by using AAO and pressure casting to smelt the quenched GeSn bulk at 700oC, annealing the finished product at 400 oC for 24 hours. Etching the Ge-Sn heterostructure nanowires with chromic acid solution. The SEM analysis could observe the Ge-Sn heterostructure nanowires with a diameter which close to 100 nm without distortion and a length of 2-3 µm, which using nickel as the electrode to fabricate the Field-Effect Transistors. From the electrical measurements and energy band diagrams, it was found that the ohmic contacts and Ge-Sn heterostructure nanowires exhibit carrier transport properties at high voltages with a carrier mobility of 0.051(cm2/(V*s). Due to the repeated high voltage measurements, resulting in Joule heating benefits. It affected the performance of the components, and the random nature of the heterostructure greatly affects the measurement results of the process components.
    The second part is the Ge-Sb heterostructure nanowire. The Ge-Sb heterostructure nanowire is formed by melting and tempering the GeSb bulk at 980oC with molecular percentage of 7:3 (antimony:germanium) for 1 hour. Smelting the GeSb bulk into the AAO with the die-casting system, and etching the outer layer of AAO with chromic acid solution for 3.5 hours after annealing at 300oC for 24 hours. The length of the Ge-Sb heterostructure nanowires is about 3-4 µm by SEM, and the p-type Schottky contact properties can be found after measurement and comparison with the energy band diagram. It represented a good carrier mobility of 1.24x10-2 (cm2/(V*s) which can be obtained that the gate voltage is ±5 V in the Id-Vg measurement.
    In the third part, GeSe2 nanowires and nanobelts. Ge ingot and Se powder with gold-plated zirconia were used as substrates and sealed into quartz tubes by vacuum pumping and placed in a heating furnace for growth. The nucleation zone (2-2.5 cm), transition zone (3-3.5 cm) and growth zone (4-4.5 cm) were found to compare with temperature, growth time. The GeSe2 nanowires and nanobelts on the substrate were fabricated the Field Effect Transistors and measured with depositing nickel and Ti/Ni as electrodes. The resistivity of GeSe2 nanowires is 0.0057 Ω-cm and the carrier mobility is 2.37x104 (cm2/(V*s)) in the annealed nickel electrodes (250 nm). And the mobility is 9.54x10-2 (cm2/(V*s)) in non-annealed Ti/Ni electrodes (20 nm/ 230 nm). Under the SEM observation, the annealed Ti/Ni electrodes will melt after doing the annealing process. Due to the thermal instability of GeSe2, the material which covered on the electrodes will be deformed due to the heating process, and so did the same condition of Ni electrodes.
    In the case of thermal instability, the annealing temperature is slowly lowered in the subsequent device measurement. It is found that 400 oC is easily damaged the device for GeSe2 and the IdVg measurement will have a lot of noise. After the annealing temperature decreased to 350 oC, the device was damaged after IdVd measurement was performed on the Ni electrode, indicating that the temperature was still too high to cause the same condition in order not to implement the continuous electrical measurement. There is no obvious on/off ratio in the IdVg measurement at 320 oC, but it will not be directly damaged due to the repeated measurements. In the subsequent electrical measurements, the annealing temperature of 320 oC and 330 oC is better for the measurement.

    碩士學位論文指導教授推薦書………………………………...………. I 碩士學位考試委員審定書……………………………………...………II 摘要..........................................................................................................III Abstract...................................................................................................VI 致謝………………………………………………...….……..…………IX List of Abbreviations and Acronyms..................................................XIV List of Figure and Tables......................................................................XV Chapter 1. Introduction...........................................................................1 1.1 Nanostructure………………………………………………………...1 1.2 The Structure and Characteristics of Ge-Sn.........................................3 1.3 The Structure and Applications of GeSb……………..........................6 1.4 GeSe2 Characteristics………………………………...........................7 1.5 Vapor–Liquid–Solid (VLS) Method....................................................7 Chapter 2. Experimental Section............................................................9 2.1 Preparation of GeSn Bulk and GeSb Bulk...........................................9 2.2 Synthesis of Ge-Sn Nanowires and Ge-Sb Nanowires………...........11 2.2.1 Fabrication of AAO Templates…………………………….………11 2.2.2 Die-Casting………………………………………………………..14 2.2.3 Removing AAO Templates………………….…………………….15 2.3 Fabrication of Ge-Sb, Ge-Sn Heterostructure Nanowires Devices….17 2.4 Instruments to Analyze the Materials……………………........……..17 2.4.1 Scanning Electron Scope (SEM)……………………..……...…….17 2.4.2 Energy Dispersion Spectrometer (EDS)………….….......…..……18 2.4.3 Raman Spectrum…………………………………………...….…..18 2.4.4 X-ray Diffractometer (XRD)………………...……….….….……..19 2.4.5 Electron Beam Lithography (EBL)………………...……..………19 Chapter 3. Results and Discussions......................................................21 3.1 Motivation of Ge-Sn and Ge-Sb Nanowires……..............................21 3.2 Characteristics of Ge-Sn Nanowires..................................................22 3.2.1 SEM and EDS analysis of Ge-Sn bulk and nanowire………...…..22 3.2.2 XRD Spectrum…………………………………..…….…..…..….25 3.2.3 Raman Spectrum…………………………………..….…..…..…..27 3.2.4 Electrical Properties of Ge-Sn Heterostructure Nanowires………30 3.3 Characteristics of GeSb bulk and Ge-Sb Heterostructure Nanowires………………………………..……………….……..…..….36 3.3.1 SEM analysis of GeSb Bulk and Ge-Sb Heterostructure Nanowires………………...…………………………………....………..37 3.3.2 XRD Spectrum………………………………………..….……….39 3.3.3 Raman Spectrum………………………………………..….……..42 3.3.4 Electrical properties of Ge-Sb heterostructure nanowires………...45 3.4 Motivation of GeSe2 nanowires and nanobelts...................................52 3.4.1 The parameters to influence the growth of GeSe2............................53 3.4.2 Temperature for growth………………………………………..…..55 3.4.3 The mass of precursors…………………………………………….57 3.4.4 The position of GeSe2 grown on ZrO substrate and the different growth time………………………...………………………………..…..61 3.4.4.1 The effect on atmosphere with the reduced of germanium in different positions of substrate………………………………………..…66 3.5 Characteristics of GeSe2 nanowires and nanobelts………..……..….71 3.5.1 SEM and EDS analysis of GeSe2…………………………………..71 3.5.2 XRD analysis of GeSe2…………………………………………….73 3.3.3 Raman Spectrum of GeSe2………………………………….……..75 3.3.4 Electrical Properties of GeSe2 Nanowire……………………….….77 Chapter 4. Summary and Conclusions..................................................93 4.1 The Performance of annealed Ge-Sn and Ge-Sb Heterostructure Nanowire………..………………………………………………………93 4.2 The growth condition and the performance of GeSe2 nanowires and nanobelts………………………………………………………………...94 Chapter 5. Future Works........................................................................95 5.1 The future work of Ge-Sn and Ge-Sb heterostructure nanowires……95 5.2 The development for GeSe2 nanowires and nanobelts………………96 References................................................................................................97 Self-Introduction……………………………………………………...114 Appendix…………………………………………………...………… 115

    [1] Charles M. Lieber and Zhong Lin Wang, “Functional Nanowires”, MRS Bulletin, 2007, 32, 99-108.
    [2] N.Wang, Y.Cai and R.Q.Zhang, “Growth of nanowires”, Materials Science and Engineering: R: Reports, 2008, 60, 1-51.
    [3] W Lu, CM Lieber, “Semiconductor nanowires”, Journal of Physics D: Applied Physics, 2006,39, 387-406.
    [4] Wenyao Li, Kaibing Xu, Lei An, Feiran Jiang, Xiying Zhou, Jianmao Yang, Zhigang Chen, Rujia Zou, Junqing Hu, “Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors”, Journal of Materials Chemistry A, 2014, 2, 1443-1447.
    [5] Zhong LinWang, “ZnO nanowire and nanobelt platform for nanotechnology”, Materials Science and Engineering: R: Reports, 2009, 64, 33-71.
    [6] W Li, K Xu, L An, F Jiang, X Zhou, J Yang, “Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors”, Journal of Materials Chemistry A, 2014, 2, 1443-1447.
    [7] Dongyun Ma, Hongzhi Wang, Qinghong Zhang and Yaogang Li, “Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance”, Journal of Materials Chemistry, 2012, 22, 16633-16639.
    [8] Huailong Li, Ying He, Vladimir Pavlinek, Qilin Cheng, Petr Saha and Chunzhong Li, “MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes”, Journal of Materials Chemistry A, 2015, 3, 17165-17171.
    [9] D Ma, H Wang, Q Zhang, Y Li, “Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance”, Journal of Materials Chemistry, 2012, 22, 16633-16639.
    [10] Mrinmoy De, Partha S. Ghosh, Vincent M. Rotello, “Applications of Nanoparticles in Biology”, Advanced materials, 2008, 20, 4225-4241.
    [11] Christine M. Welch & Richard G. Compton, “The use of nanoparticles in electroanalysis: a review”, Analytical and Bioanalytical Chemistry, 2006, 384, 601-619.
    [12] M De, PS Ghosh, VM Rotello,“The use of nanoparticles in electroanalysis: a review”, Advanced Materials, 2008, 20, 4225-4241.
    [13] Venkatagirish Nagavarapu, Ritesh Jhaveri, Jason C. S. Woo, “The Tunnel Source (PNPN) n-MOSFET: A Novel High Performance Transistor”, IEEE Transactions on Electron Devices, 2008, 55, 1013-1019.
    [14] M. W. Rony, En Xia Zhang, Shintaro Toguchi, Xuyi Luo, Mahmud Reaz, Kan Li, Dimitri Linten; Jerome Mitard, Robert A. Ree, " Negative-Bias-Stress and Total-Ionizing-Dose Effects in Deeply Scaled Ge-GAA Nanowire pFETs ", International Conference on Communication and Signal Processing (ICCSP), 2022, 69, 299-306.
    [15] Namrata Mendiratta1 and Suman Lata Tripathi, "A review on performance comparison of advanced MOSFET structures below 45 nm technology node", Journal of Semiconductors, 2020, 41, 061401.
    [16] Rinku Saran & Richard J. Curry, "Lead sulphide nanocrystal photodetector technologies", Nature Photonics, 2016, 10, 81-92.
    [17] Tao Dong, João Simões, Zhaochu Yang, " Flexible Photodetector Based on 2D Materials: Processing, Architectures, and Applications", Nature Photonics, 2020, 7, 1901657.
    [18] XIA, Fengnian, et al., "Ultrafast graphene photodetector. Nature nanotechnology", 2009, 4, 839-843.
    [19] Pius Victor Chombo, Yossapong Laoonual, " A review of safety strategies of a Li-ion batterys", Journal of Power Sources, 2020, 478, 1-19.
    [20] Fabian Duffner, Niklas Kronemeyer, Jens Tübke, Jens Leker, Martin Winter & Richard Schmuch, " Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure", Nature Energy, 2020, 478, 1-19.
    [21] Liu, K., Liu, Y., Lin, D., Pei, A., & Cui, Y., "Materials for lithium-ion battery safety", Science advances, 2018, 4, 1-11.
    [22] Salvador Barraza-Lopez and Thaneshwor P. Kaloni, " Water Splits To Degrade Two-Dimensional Group-IV Monochalcogenides in Nanoseconds", ACS central science, 2018, 4, 1436–1446.
    [23] Sol Lee, Joong-Eon Jung, Han-gyu Kim, Yangjin Lee, Je Myoung Park, Jeongsu Jang, Sangho Yoon, Arnab Ghosh, Minseol Kim, Joonho Kim, Woongki Na, Jonghwan Kim, Hyoung Joon Choi, Hyeonsik Cheong, and Kwanpyo Kim, "γ-GeSe: A New Hexagonal Polymorph from Group IV–VI Monochalcogenides", Nano Letters, 2021, 21, 4305–4313.
    [24] Chowdhury, Chandra, Sharmistha Karmakar, and Ayan Datta. "Monolayer group IV–VI monochalcogenides low-dimensional materials for photocatalytic water splitting.", The Journal of Physical Chemistry C, 2017, 121, 7615-7624.
    [25] Alexey A. Dyachenko, Alexey V. Lukoyanov, Vladimir I. Anisimov, and Artem R. Oganov, "Electride properties of ternary silicide and germanide of La and Ce", Physical Review B, 2022, 105, 085146.
    [26] Oliver P. E. Townrow, Andrew S. Weller and Jose M. Goicoechea, " Cluster expansion and vertex substitution pathways in nickel germanide Zintl clusters", Chemical Communications, 2021, 57, 7132-7135.
    [27] Vladislav Dřínek, Stanislav Tiagulskyi, Roman Yatskiv, Jan Grym, Radek Fajgar, Věra Jandová, Martin Koštejn and Jaroslav Kupčík, "Electride properties of ternary silicide and germanide of La and Ce", Beilstein Journal of Nanotechnology, 2021, 12, 1365–1371.
    [28] Andrew C. Meng, Michael R.Braun,Yanming Wang, Siying Peng, Wanliang Tan, J.Zach Lentz, Muyu Xue, Anahita Pakzad, Ann F.Marshall, James S. Harris, WeiCai, Paul C.McIntyre, " Growth mode control for direct-gap core/shell Ge/GeSn nanowire light emission", Chemical Communications, 2020, 40, 101-113.
    [29] Jessica Doherty, Subhajit Biswas, David McNulty, Clive Downing, Sreyan Raha, Colm O’Regan, Achintya Singha, Colm O’Dwyer, and Justin D. Holmes, "One-Step Fabrication of GeSn Branched Nanowires", Chemistry of Materials, 2019, 31, 4016–4024.
    [30] Zeghouane, Mohammed, Hadi Hijazi, Franck Bassani, Gauthier Lefevre, Eugenie Martinez, Thierry Luciani, Pascal Gentile, Vladimir G Dubrovskii and Bassem Salem. "Enhancing the incorporation of Sn in vapor–liquid–solid GeSn nanowires by modulation of the droplet composition.", Nanotechnology, 2022, 33, 245605.
    [31] Mingshan Liu, Dong Yang, Alexander Shkurmanov, Jin Hee Bae, Viktoria Schlykow, Jean-Michel Hartmann, Zoran Ikonic, Florian Baerwolf, Ioan Costina, Andreas Mai, Joachim Knoch, Detlev Grützmacher, Dan Buca, and Qing-Tai Zhao, " Epitaxial GeSn/Ge Vertical Nanowires for p-Type Field-Effect Transistors with Enhanced Performance", ACS Applied. Nano Materials, 2021, 4, 94–101.
    [32] Subhajit Biswas, Jessica Doherty, Emmanuele Galluccio, Hugh G. Manning, Michele Conroy, Ray Duffy, Ursel Bangert, John J. Boland, and Justin D. Holmes, “Stretching the Equilibrium Limit of Sn in Ge1–xSnx Nanowires: Implications for Field Effect Transistors”, ACS Applied. Nano Materials, 2021, 4, 1048–1056.
    [33] Liu, Mingshan, Mingshan Liu; Yan Liu, Hongjuan Wang, Qingfang Zhang, Chunfu Zhang, Shengdong Hu, Yue Hao, Genquan Han. "Design of GeSn-based heterojunction-enhanced N-channel tunneling FET with improved subthreshold swing and ON-state current." IEEE Transactions on Electron Devices, 2015, 62, 1262-1268.
    [34] Yuekun Yang, Xudong Wang, Chen Wang, Yuxin Song, Miao Zhang, Zhongying Xue, Shumin Wang, Zhongyunshen Zhu, Guanyu Liu, Panlin Li, Linxi Dong, Yongfeng Mei, Paul K. Chu, Weida Hu, Jianlu Wang, and Zengfeng Di,“Ferroelectric Enhanced Performance of a GeSn/Ge Dual-Nanowire Photodetector”, Nano Letters, 2020, 20, 3872–3879.
    [35] Fan Yang, Kai Yu, Hui Cong, Chunlai Xue, Buwen Cheng, Nan Wang, Lin Zhou, Zhi Liu, and Qiming Wang,“Highly Enhanced SWIR Image Sensors Based on Ge1–xSnx–Graphene Heterostructure Photodetector”, ACS Photonics, 2019, 6, 1199–1206.
    [36] A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens. "GeSn/Ge heterostructure short-wave infrared photodetectors on silicon", Optics express, 2012, 20, 27297-27303.
    [37] Ruiling Gong, Lulu Zheng, Pere Roca i Cabarrocas, Wanghua Chen. "Rational control of GeSn nanowires." physica status solidi (RRL)–Rapid Research Letters, 2022, 16, 2011554.
    [38] Edy Azrak, Wanghua Chen, Simona Moldovan, Shiwen Gao, Sébastien Duguay, Philippe Pareige, and Pere Roca i Cabarrocas,“Growth of In-Plane Ge1–xSnx Nanowires with 22 at. % Sn Using a Solid–Liquid–Solid Mechanism”, The Journal of Physical Chemistry C, 2018, 122, 26236–26242.
    [39] Haofeng Li, Jeremy Brouillet, Alan Salas, Xiaoxin Wang, and Jifeng Liu,“Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics”, Optical Materials Express, 2013, 3, 1385-1396.
    [40] Sicong Hua, Zihan Zhao, Xiao Su, Jiwei Zhai, Sannian Song, Zhitang Song,“Crystallization characteristic and structure of hafnium addition in germanium antimony thin films for phase change memory”, Journal of Alloys and Compounds, 2021, 864, 158893.
    [41] O. Abou El Kheir, D. Dragoni, and M. Bernasconi, “Density functional simulations of decomposition pathways of Ge-rich GeSbTe alloys for phase change memories”, Physical Review Materials, 2021, 5, 095004.
    [42] Chen, Y. C., Rettner, C. T., Raoux, S., Burr, G. W., Chen, S. H., Shelby, R. M., M. Salinga, W. P. Risk, T. D. Happ, G. M. McClelland, M. Breitwisch, A. Schrott, J. B. Philipp, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. F. Chen, E. Joseph, S. Zaidi, B. Yee, H. L. Lung, R. Bergmann, C. Lam "Ultra-thin phase-change bridge memory device using GeSb." ,International Electron Devices Meeting. IEEE, 2006, 16, 1-4.
    [43] Calum Williams, Nina Hong, Matthew Julian, Stephen Borg, and Hyun Jung Kim,“Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe”, Materials Letters, 2020, 28, 10583-10594.
    [44] Yasir J. Noori, Lingcong Meng, Ayoub H. Jaafar, Wenjian Zhang, Gabriela P. Kissling, Yisong Han, Nema Abdelazim, Mehrdad Alibouri, Kathleen LeBlanc, Nikolay Zhelev, Ruomeng Huang, Richard Beanland, David C. Smith, Gillian Reid, Kees de Groot, and Philip N. Bartlett, “Phase-Change Memory by GeSbTe Electrodeposition in Crossbar Arrays”, ACS Applied Electronic Materials, 2021, 3, 3610–3618.
    [45] Dr. Chunxi Hou, Jiaxi Li, Linlu Zhao, Dr. Wei Zhang, Dr. Quan Luo, Dr. Zeyuan Dong, Jiayun Xu, Prof. Dr. Junqiu Liu. "Construction of Protein Nanowires through Cucurbit uril‐based Highly Specific Host–Guest Interactions: An Approach to the Assembly of Functional Proteins." Angewandte Chemie,2013, 125, 5700-5703.
    [46] Chaochao Liu, Xinran Cao, Jun W Ang, Yafei Yuan, Jing S U, Chunmin Liu, Ling Cheng, Xintong Zhang, Jing Li, and Xia ZHANG, “Investigation on the optical phase change properties of intrinsic GeSb and Ti-doped GeSb”, Materials Letters, 2018, 8, 936-946.
    [47] Hyung Keun Kim, Nam Hee Kim & Doo Jin Choi, “Investigation of the crystallization process and crystal structure of Si-incorporated GeSb phase-change films”, Journal of Materials Science, 2012, 47, 6679–6687.
    [48] Okamoto, H., “Okamoto, H. (2012). Ge-Sb (Germanium-Antimony)”, 2012, 33, 162-162.
    [49] Jakšić, Z. M., “Temperature and pressure dependence of phonon frequencies in GeS2, GeSe2, and SnGeS3”, physica status solidi (b),2003, 239, 131-143.
    [50] M Fuentes-Cabrera, H Wang, “Phase stability and pressure-induced semiconductor to metal transition in crystalline GeSe2”, Journal of Physics: Condensed Matter, 2002, 14, 9589.
    [51] ShermanSusman, Kenneth J.Volin, Daniel G.Montague, David L.Price, “The structure of vitreous and liquid GeSe2: a neutron diffraction study”, Journal of Non-Crystalline Solids, 1990, 125, 168-180.
    [52] Yury S. Tveryanovich, Timur R. Fazletdinov, Andrey S. Tverjanovich, Dmitrii V. Pankin, Egor V. Smirnov, Oleg V. Tolochko, Maxim S. Panov, Mikhail F. Churbanov, Igor V. Skripachev, and Mikhail M. Shevelko, “Increasing the Plasticity of Chalcogenide Glasses in the System Ag2Se–Sb2Se3–GeSe2”, Chemistry of Materials, 2022, 34, 2743–2751.
    [53] K.Mahmood, Jolly Jacob, M.Shakir, Syed ZafarIlyas, U.Rehman, A.Ali, A.Ashfaq, Nasir Amin, S.Ikram, Nasir Ali, “Modulation of thermoelectric properties of GeSeIn thin films by annealing in oxygen environment”, Physica B: Condensed Matter, 2019, 572, 66-69.
    [54] Yusi Yang, Shun-Chang Liu, Wei Yang, Zongbao Li, Yang Wang, Xia Wang, Shishu Zhang, Yun Zhang, Mingsheng Long, Gengmin Zhang, Ding-Jiang Xue, Jin-Song Hu, and Li-Jun Wan, “Air-Stable In-Plane Anisotropic GeSe2 for Highly Polarization-Sensitive Photodetection in Short Wave Region”, Journal of the American Chemical Society, 2018, 140, 4150–4156.
    [55] Yao, J., Guo, W., Liu, Y., Niu, X., Li, M., Wu, X., & Wang, Y. , “Gate induced charge transfer and hysteresis enlargement in MoS2/GeSe2 vertical heterostructures”, Journal of Materials Chemistry C, 2021, 9, 8213-8219.
    [56] Jonas Keukelier, Karl Opsomer , Thomas Nuytten , Stefanie Sergeant, Wouter Devulder, Sergiu Clima ,Ludovic Goux ,Gouri Sankar Kar and Christophe Detavernier, “Impact of changes in bond structure on ovonic threshold switching behaviour in GeSe2”, Journal of the American Chemical Society, 2021, 9, 117-126.
    [57] Zongbao Li, Xia Wang, Wei Shi, Xiaobo Xing, Ding-Jiang Xue and Jin-Song Hu, “Strain-engineering the electronic properties and anisotropy of GeSe2 monolayers”, RSC Advances, 2018, 8, 33445-33450.
    [58] Dr. Matti B. Alemayehu, Dr. Matthias Falmbigl, Kim Ta, Jeffrey Ditto, Dr. Douglas L. Medlin, Dr. David C. Johnson, “Designed Synthesis of van der Waals Heterostructures: The Power of Kinetic Control”, Angewandte Chemie, 2015, 127, 15688-15692.
    [59] Sergiu Clima, Daniele Garbin, Karl Opsomer, Naga S. Avasarala, Wouter Devulder, Ilya Shlyakhov, Jonas Keukelier, Gabriele L. Donadio, Thomas Witters, Shreya Kundu, Bogdan Govoreanu, “Ovonic Threshold-Switching Gex-Sey Chalcogenide Materials: Stoichiometry, Trap Nature, and Material Relaxation from First Principles”, Physica Status Solidi, 2020, 14, 123-134.
    [60] Hajto, J., and István Jánossy. "Optical bistability observed in amorphous semiconductor films.", Philosophical Magazine B, 1983, 47, 347-366.
    [61] J. L. Taggart, R. Fang, Y. Gonzalez-Velo, H. J. Barnaby; M. N. Kozicki, J. L. Pacheco, E. S. Bielejec, M. L. McLain, N. Chamele, A. Mahmud, M. Mitkova. "Resistance state locking in CBRAM cells due to displacement damage effects.", IEEE Transactions on Nuclear Science, 2017, 64, 2300-2306.
    [62] N.H.Alvi, Wasiedul Hassan, B.Farooq, O.Nur, and M.Willander, “Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor–liquid–solid (VLS) method”, Materials Letters, 2021, 6, 123-134.
    [63] Yang, P., Yan, H., Mao, S., Russo, R., "Controlled growth of ZnO nanowires and their optical properties.", Advanced functional materials, 2002, 12, 323-331.
    [64] Marcelo Ornaghi Orlandi, Edson Roberto Leite, Rosiana Aguiar, Jefferson Bettini, and Elson Longo, “Growth of SnO nanobelts and dendrites by a self-catalytic VLS process”, The Journal of Physical Chemistry B, 2006, 110, 6621-6625.
    [65] Daniel E. Perea, Nan Li, Robert M. Dickerson, Amit Misra, and S. T. Picraux, “Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying”, Nano Letters, 2011, 11, 3117-3122.
    [66] Perea, D. E., Li, N., Dickerson, R. M., Misra, A. & Picraux, S. T., “Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying”, Nano letters, 2011, 11, 3117-3122.
    [67] Shiyong Zhao, Helene Roberge, Arthur Yelon, and Teodor Veres, “New application of AAO template:  A mold for nanoring and nanocone arrays”, Journal of the American Chemical Society, 2006, 128, 12352-12353.
    [68] Kyungtae Kim, Moonjung Kim, and Sung M.Cho, “Pulsed electrodeposition of palladium nanowire arrays using AAO template”, Materials Chemistry and Physics, 2006, 96, 278-282.
    [69] Rui Yang, Chunhong Sui, Jian Gong, and Lunyu Qu, “Silver nanowires prepared by modified AAO template method”, Materials Letters, 2007, 61, 900-903.
    [70] Yingke Zhou, Chengmin Shen, and Hulin Li, “Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template”, Solid State Ionics, 2002, 146, 81-86.
    [71] Pillarisetty, Ravi. "Academic and industry research progress in germanium nanodevices." Nature,2011 479, 324-3280
    [72] Wang, R., Sambandam, S. N., Majkic, G., Galstyan, E., & Selvamanickam " High mobility single-crystalline-like germanium thin films on flexible, inexpensive substrates ". Thin Solid Films, 2013, 527: 9-15.
    [73] Luo, L. B., Yang, X. B., Liang, F. X., Jie, J. S., Wu, C. Y., Wang, L., & Zhu, Z. F. Surface dangling bond-mediated molecules doping of germanium nanowires. The Journal of Physical Chemistry C, 2011, 115, 24293-24299.
    [74] Cheng-Yu Tsai , Shih-Ying Yu , Cheng-Lun Hsin , Chun-Wei Huang , Chun-Wen Wang and Wen-Wei Wu, “Growth and properties of single-crystalline Ge nanowires and germanide/Ge nano-heterostructures”, CrystEngComm, 2012, 14, 53.
    [75] Binh-Minh Nguyen, Yuan Taur, S. Tom Picraux, and Shadi A. Dayeh, “Diameter-Independent Hole Mobility in Ge/Si Core/Shell Nanowire Field Effect Transistors”, Nano Letters, 2014, 14, 585-591.
    [76] Likai Li, Yijun Yu, Guo Jun Ye, Qingqin Ge, Xuedong Ou, Hua Wu, Donglai Feng, Xian Hui Chen & Yuanbo Zhang, “Black phosphorus field-effect transistors”, Nature Nanotechnology, 2014, 9, 372-377.
    [77] Fang Chen, Jilin Xia, David K. Ferry, and Nongjian Tao, “Dielectric Screening Enhanced Performance in Graphene FET”, Nano Letters. 2009, 9, 2571–2574.
    [78] Xing Zhou, Xiaozong Hu, Shasha Zhou, Qi Zhang, Huiqiao Li, Tianyou Zhai, “Ultrathin 2D GeSe2 Rhombic Flakes with High Anisotropy Realized by Van der Waals Epitaxy”, Advanced Functional Materials, 2017, 27, 1703858.
    [79] Yong Yan, Wenqi Xiong, Shasha Li, Kai Zhao, Xiaoting Wang, Jian Su, Xiaohui Song, Xueping Li, Shuai Zhang, Huai Yang, Xinfeng Liu, Lang Jiang, Tianyou Zhai, Congxin Xia, Jingbo Li, and Zhongming Wei, “Direct Wide Bandgap 2D GeSe2 Monolayer toward Anisotropic UV Photodetection”, Advanced Optical Materials, 2019, 7, 1900622.
    [80] Jiadong Yao, Wenxuan Guo ,Yali Liu , Xinyue Niu, Mengge Li, Xiaoxiang Wu, Ying Yu, Tianjian Ou, Jian Sha and Yewu Wang, “Gate induced charge transfer and hysteresis enlargement in MoS2/GeSe2 vertical heterostructures”, Journal of Materials Chemistry, 2021, 9, 8213-8219.
    [81] Xing Zhou, Xiaozong Hu, Shasha Zhou, Qi Zhang, Huiqiao Li, Tianyou Zhai, “Ultrathin 2D GeSe2 Rhombic Flakes with High Anisotropy Realized by Van der Waals Epitaxy”, Journal of Materials Science: Materials in Electronics, Advanced Functional Materials, 2017, 27, 1703858.

    無法下載圖示 全文公開日期 2027/09/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2027/09/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE