簡易檢索 / 詳目顯示

研究生: 詹景翔
Jing-Siang Jhan
論文名稱: 多孔質陽極氧化鋁模板製作似蟬翼抗反射結構
Fabrication of Cicada Wing Like Anti-reflection Structure by Porous Anodic Alumina Template
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 楊申語
Sen-Yeu Yang
沈永康
Yung-Kang Shen
黃國政
Kuo- Cheng Huang
張復瑜
Fuh-Yu Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 245
中文關鍵詞: 多孔質陽極氧化鋁蟬翼結構反向模製抗反射鏡片
外文關鍵詞: Porous anodic alumina(PAA), Cicada wing structure, Reverse molding, Anti-reflection lens(AR Lens)
相關次數: 點閱:1777下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以多孔質陽極氧化鋁(Porous Anodic Alumina, PAA)為模板製作仿蟬翼結構之研究,先以實驗設計方法找出氧化鋁製程參數,接著製作出仿蟬翼結構之負形孔洞氧化鋁模板,最後結合反向模製(Reverse Molding, RVM)技術製作正型仿蟬翼結構聚甲基丙烯酸甲脂(Polymethylmethacrylate, PMMA)抗反射鏡片(Anti-Reflection Lens, AR Lens)。首先觀察蟬翼結構為底徑160nm、頂徑70nm、間距190nm與高度400nm,接著以電壓80V、草酸0.1M、溫度3oC製作出大徑127nm、小徑66nm、間距170nm與高度390nm之仿蟬翼結構多孔質陽極氧化鋁模板,最後以反向模製PMMA製作出次微米結構底徑131nm、頂徑55nm、間距163nm與高度350nm之AR Lens,其穿透率在波長700nm時為90.81%,比無結構PMMA87.56%高出3.25%,反射率為3.36%,比無結構之參考PMMA薄片(4.14%)低了0.78%,證實了仿蟬翼結構具有增加穿透減低反射之效果;其接觸角從無結構85.55o降低為49.95o,增加了親水性。此研究未來可以應用於太陽能電池模組表面、顯示器螢幕、手機螢幕等增透抗反射膜。


    This research is to fabricate a cicada wing mimicked anti-reflection (AR) structure on PMMA with porous anodic alumina (PAA) template by reverse molding(RVM). Firstly, the design of experimental (DOE) is used to find optimal experimental parameters of submicron scaled PAA growth, then to fabricate the cicada wing mimicked structure PAA template for RVM of PMMA. Finally FESEM, spectrophotometer and contact angle instruments are used to investigate the properties of PMMA AR Lens. Results show that PMMA AR lens can increase the transmittance by 3.25% and reduce reflectivity by 0.78% as compared with plain PMMA film. The contact angle of PMMA AR lens is reduced from 85.55o to 35.6o PMMA film. Reverse molding of PMMA has been developed, compared with the plain structure less than 100nm can be replicated. Potentially, the cicada wing mimicked structure and the PAA template and reverse molding could be used to fabricate a large area of AR polymer film. These films can be applied enhanced AR optical films for on surface of solar cells module, cell phone monitor, LCD monitor and others optical applications.

    目錄 致謝....... I 中文摘要 III ABSTRACT IV 目錄 V 圖目錄 IX 表目錄 XV 符號表 XVII 第一章 導論 1 1.1 研究背景 1 1.2 研究動機與目的 5 1.3 研究方法 9 1.4 章節介紹 11 第二章 文獻回顧 12 2.1 蛾眼與蟬翼結構相關文獻回顧 12 2.2 多孔質陽極氧化鋁相關文獻回顧 21 2.2.1 多孔質陽極氧化鋁成形原理機制回顧 21 2.2.2 預圖案導引規則多孔質陽極氧化鋁成長 30 2.2.3 多孔質陽極氧化鋁應用面 35 2.3 次微米模造製程回顧 40 2.3.1 奈米壓印(Nanoimprint Lithography) 40 2.3.2 射出成形(Injection Molding) 44 2.3.3 高分子聚合法 45 2.4 相關國內外專利分析 46 2.5 文獻回顧與專利分析總結 53 第三章 次微米結構抗反射光學元件原理設計 56 3.1 抗反射結構 56 3.1.1 光的波動性 56 3.1.2 抗反射薄膜干涉理論 60 3.1.3 等效介質與非均質層理論 65 3.2 仿蟬翼結構光學元件設計與規劃 68 3.2.1 光學設計原理 68 3.2.2 蟬翼結構觀察 69 3.2.3 仿蟬翼結構多孔質陽極氧化鋁模板設計 71 第四章 多孔質陽極氧化鋁與反向模製製程 76 4.1 鋁的介紹 76 4.1.1 鋁的性質 76 4.1.2 鋁的分類 77 4.2 氧化鋁介紹 78 4.2.1 氧化鋁(Al2O3)的種類與性質 78 4.2.2 陽極處理氧化鋁 79 4.3 多孔質陽極氧化鋁成形機制 81 4.3.1 孔洞成形 81 4.3.2 穩定成長 83 4.3.3 退火處理與多孔質陽極氧化鋁成長性 83 4.3.4 擴孔機制 88 4.4 多孔質陽極氧化鋁製程分析與實驗設計 92 4.5 仿蟬翼多孔質陽極氧化鋁模板 99 4.6 反向模製製程(Reverse Molding, RVM) 102 第五章 實驗流程與實驗設備 105 5.1 實驗流程規劃 105 5.2 實驗設備與原料 106 5.2.1 實驗耗材 106 5.2.2 硬體設備 108 5.2.3 軟體設備 112 5.3 實驗設計多孔質陽極氧化鋁製程流程 118 5.4 仿蟬翼結構多孔質陽極氧化鋁模板製程流程 120 5.5 反向模製製程流程 124 5.5.1 預聚合PMMA 124 5.5.2 反向模製多孔質陽極氧化鋁模板 126 第六章 實驗結果與討論 129 6.1 實驗設計結果分析與討論 129 6.1.1 孔壁底部直徑分析與迴歸方程式 132 6.1.2 孔壁底部間距分析與迴歸方程式 140 6.1.3 多孔質陽極氧化鋁厚度分析與迴歸方程式 148 6.1.4 實驗設計結果小結 155 6.2 仿蟬翼多孔質陽極氧化鋁模板 157 6.2.1 電解拋光 157 6.2.2 仿蟬翼結構多孔質陽極氧化鋁製程成品 160 6.3 反向模製與成品性質量測 168 6.4 反向模製PMMA抗反射鏡片穿透率之量測 173 6.5 反向模製PMMA抗反射鏡片反射率之量測 178 6.6 反向模製次微米結構之等效折射率 184 6.7 反向模製PMMA抗反射鏡片之接觸角量測 187 6.8 結果與討論總結 191 第七章 結論與建議 194 7.1 結論 194 7.2 建議 196 參考文獻 198 附錄A 5N(99.999%)純鋁材料性質 205 附錄B 日本菊水(KIKUSUI)公司電源供應器規格 206 附錄C JASCO V-550穿透率量測數據 208 附錄D Perkin Elmer Lambda 900反射率量測數據 215

    [1]C.G. Bernhard, "Structural and functional adaptation in a visual system," Endeavor, Vol.26, pp.79-84, 1967.
    [2]Pete Vukusic and J. Roy Sambles, "Photonic structures in biology," Nature, Vol.424, pp.852-855, 2003.
    [3]G.S. Watson, J.A. Watson, "Natural nano-structures on insects-possible functions of ordered arrays characterized by atomic force microscopy," Applied Surface Science, Vol.235, pp.139-144, 2004.
    [4]P R Stoddart, P J Cadusch, T M Boyce, R M Erasmus and J D Comins, "Optical properties of chitin surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings," Nanotechnology, Vol.17, pp.680-686, 2006.
    [5]Andrew R. Parker and Helen E. Townley, "Biomimetics of photonic nanostructures," Nature Nanotechnology, Vol.2, pp.347-353, 2007.
    [6]Nicholas C. Linn, Chih-Hung Sun, Peng Jiang and Bin Jiang, " Self-assembled biomimetic antireflection coatings," Applied Physics Letters, Vol.99, pp. 101108-1~3, 2007.
    [7]Jingyun Huang, Xudong Wang and Zhong LinWang, "Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes," Nanotechnology, Vol.19, No.025602, 2008.
    [8]Guoyong Xie, Guoming Zhang, Feng Lin, Jin Zhang, Zhongfan Liu and Shichen Mu, " The fabrication of subwavelength anti-reflective nanostructures using a bio-template," Nanotechnology, Vol.19, No.095605, 2008.
    [9]Bengogh, Stuart, British Patent, 223994, 1923.
    [10]F. Keller, M.S. Hunter, and D.L. Robinson, "Structural features of oxide coatings on aluminum," Journal of the Electrochemical Society, Vol.100, pp.11-419, 1953.
    [11]J.P. O'Sullivan and G.C. Wood, "The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminum," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.317, pp.511-543, 1970.
    [12]G.E.Thompson and G.C.Wood, "Porous anodic film formation on aluminum," Nature, Vol.290, pp.230-232, 1981.
    [13]G.E. Thompson and G.C. Wood, "Corrosion: Aqueous Process and passive films," Treaties on Materials Science and Technology, Academic Press Inc.(London)Ltd., Vol.23, Chap.5, pp.206, 1983.
    [14]V.P. Parkhutik and V.I. Shershulsky, "Theoretical modeling of porous oxide growth on aluminum," Journal of Physics D: Applied Physics, Vol.25, pp.1258-1263, 1992.
    [15]Hideki Masuda and Kenji Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, Vol.268, pp.1466-1468, 1995.
    [16]A.P. Li, F. Mller, A. Birner, K. Nielsch, and U. Gsele, "Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, Vol.84, pp.6023-6026, 1998.
    [17]O. Jessensky, F. Muller, and U. Gosele, "Self-organized formation of hexagonal pore arrays in anodic alumina" Applied Physics Letters, Vol.72, pp.1173-1175, 1998.
    [18]A.P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Polycrystalline nanopore arrays with hexagonal ordering on aluminum" The Journal of Vacuum Science and Technology A, Vol.17, pp.1428-1431, 1999.
    [19]Hideki Masuda, Masato Yotsuya, Mari Asano, and Kazuyuki Nishio, "Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina," Applied Physics Letters, Vol.78, pp.826-828, 2001.
    [20]Nai-Qin Zhao, Xiao-Xue Jiang, Chun-Sheng Shi, Jia-Jun Li, Zhi-Guo Zhao, Xi-Wen Du, "Effects of anodizing conditions on anodic alumina structure," Journal of Materials Science, Vol.42, pp.3878-3882, 2007.
    [21]Hideki Masuda, Haruki Yamada, Masahiro Satoh, and Hidetaka Asoh, "Highly ordered nanochannel-array architecture in anodic alumina," Applied Physics Letters, Vol.71, pp.2770-2772, 1997.
    [22]Hideki Masuda, Hidetaka Asoh, Mitsuo Watanabe, Kazuyuki Nishio, Masashi Nakao, and Toshiaki Tamamura, "Square and Triangular Nanohole Array Architectures in Anodic Alumina," Advance Materials, Vol.13, pp.189-192, 2001.
    [23]Yoshitaka Matsui, Kazuyuki Nishio and Hideki Masuda, "Highly Ordered Anodic Porous Alumina by Imprinting Using Ni Molds Prepared from Ordered Array of Polystyrene Particles," Japanese Journal of Applied Physics, Vol. 44, pp.7726-7728, 2005.
    [24]Kazuyuki Nishio, Takashi Yanagishita, Sho Hatakeyama, Hiroaki Maegawa, Hideki Masuda, "Fabrication of ideally ordered anodic porous alumina with large area by vacuum deposition of Al onto mold," The Journal of Vacuum Science and Technology B, Vol.26, pp.L10-L12, 2008.
    [25]C.Y. Liu, A. Datta, and Y.L. Wang, "Ordered anodic alumina nanochannels on focused-ion-beam prepatterned aluminum surfaces," Applied Physics Letters, Vol.78, pp.120-122, 2001.
    [26]Hideki Masuda, Kenji Yasui, and Kazuyuki Nishio, "Evaporation Mask Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask," Advance Materials, Vol.12, pp.1031-1033, 2000.
    [27]Takashi Yanagishita, Makoto Sasaki, Kazuyuki Nishio and Hideki Masuda, "Carbon Nanotubes with a Triangular Cross-section, Fabricated Using Anodic Porous Alumina as the Template," Advance Materials, Vol.16, pp.429-432, 2004.
    [28]Takashi Yanagishita, Kenji Yasui, Toshiaki Kondo, Yasushi Kawamoto, Kazuyuki Nishio, and Hideki Masuda, "Antireflection Polymer Surface Using Anodic Porous Alumina Molds with Tapered Holes," Chemistry Letters, Vol.36, pp.530-531, 2007.
    [29]Takashi Yanagishita, Kazuyuki Nishio, and Hideki Masuda, "Two Dimensional Photonic Crystal Composed of Ordered Polymer Nanopillar Arrays with High Aspect Ratios Using Anodic Porous Alumina," Applied Physics Express, Vol.1, pp.012002, 2008.
    [30]Woo Lee, Mi-Kyoung Jin, Won-Cheol Yoo, and Jin-Kyu Lee, "Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability," Langmuir, Vol.20, pp.7665-7669, 2004.
    [31]何光朗,"次微米陽極氧化鋁孔洞製作光學元件之研究",國立台灣科
    技大學機械工程研究所,2008.
    [32]Mikell P. Groover, "Fundamentals of Modern Manufacturing," Wiley International Edition, pp.13, 2002
    [33]奈米科技研發中心,http://www.ntrc.itri.org.tw/dict/content.jsp?newsid=697
    [34]陳炤彰,"製造分析",研究所課程講義,國立台灣科技大學,2005.
    [35]陳振祥,"台灣賞蟬圖鑑",大樹文化出版社,2004.
    [36]吳平耀,"抗反射膜製造方法與介紹",工業材料雜誌,206期,pp.98-106, 2004.
    [37]Nano Science奈米科學網,http://nano.nchc.org.tw/
    [38]蔡耀全,"奈米級仿生黏著科技",國立台灣大學機械工程研究所,2006.
    [39]Diyaa Almawlawi, Ken A. Bosnick, Anita Osika, and Martin Moskovits, "Fabrication of Nanometer-Scale Patterns by Ion-Milling with Porous Anodic Alumina Masks," Advanced Materials, Vol.12, pp.1252-1257, 2000.
    [40]嘎嘎昆蟲網,http://gaga.jes.mlc.edu.tw/
    [41]Dinguo Chen, "Anti-reflection (AR) coatings made by sol-gel processes: A review," Solar Energy Materials & Solar Cells, Vol.68, pp.313-336, 2001.
    [42]李正中,"光電科技概論",五南圖書出版股份有限公司,2008.
    [43]許招墉,"物理光學",俊傑書局股份有限公司,2002.
    [44]趙凱華,鍾錫華,"光學",儒林圖書有限公司,1992.
    [45]Davod Halliday, Robert Resnick, Jearl Walk,"物理(下)",全華科技圖書股份有限公司,1995.
    [46]J.C.Maxwell Garnett, "Colours in metal glasses and metallic films," Philos. Trans., R Soc. London 203,385, 1904.
    [47]Daniel H. Raguin and G. Michael Morris, "Antireflection structured surfaces for the infrared spectral region," Applied Optics, Vol.32, No.7, 1993.
    [48]潘扶民,陳柏林,蔡增光,郭正次,"規則排列奈米點陣列的製作方法",中華民國專利,專利號碼:I220539,2004.
    [49]周淑金,李秉璋,顏佳瑩,李世光,陳春弟,"抗反射性光學結構之成型模具及其製造方法",中華民國專利,專利號碼:I250928,2006.
    [50]朝春光,陳建仲,陳容萱,郭金國,"具陣列式奈米孔洞之氧化鋁薄膜的製造方法",中華民國專利,專利號碼:I285225,2007.
    [51]丁永強,"奈米金屬線製造方法",中華民國專利,專利號碼:I289874,2007.
    [52]田口登喜生,值木俊,中村浩三,津田和彥,"防反射材、光學元件、顯示裝置、壓膜製造方法及使用壓膜之防反射材之製造方法",中華民國專利,專利編號:I290233,2007.
    [53]Hideki Masuda, Kenji Yasui, Yasushi Kawamoto, "Anti-reflective film and production method thereof, and stamper for producing anti-reflective film and production method thereof," U.S. Patent, No.20070289874, 2007.
    [54]尤光先,"鋁的陽極處理技術",財團法人徐氏基金會,1991.
    [55]鄭培毓,"藍紫光雷射儲存技術發展現況", OPTOLINK, Vol.31, 2001.
    [56]羅豐祥,"藍光HD-DVD 及Blu-Ray Disc技術探微", CTimes:全球中文文化性電子產業社群平台,http://www.ctimes.com.tw/,2005.
    [57]Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B, Vol.14, pp.4129-4133, 1996
    [58]M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B.J. Choi, M. Wedlake, T. Michaelson, S.V. Sreenivasan, J. Ekerdt, C.G. Willson, "Step and Flash Imprint Lithography:A New Approach to High-Resolution Patterning," Proceedings of SPIE's 24th International Symposium on Microlithography: Emerging Lithographic Technologies III, Vol.3676, 1999.
    [59]Younan Xia and George M. Whitesides, "SOFT LITHOGRAPHY," Annual Review of Materials Science, Vol. 28, pp.153, 1998.
    [60]葉玉堂,饒建珍,肖峻,"幾何光學",五南圖書出版股份有限公司,2008.
    [61]楊書案,"莊子",實學社出版股份有限公司,1996.
    [62]Canon Global, http://www.canon.com/news/2008/sep17e.html
    [63]張玉龍,趙中魁,"實用輕金屬材料手冊",化學工業出版社,2006.
    [64]林本源,陳石法,謝忠佑,蔡希杰,"機械材料",高立圖書有限公司,1999.
    [65]汪建民,"陶瓷技術手冊(下)",中華民國粉末冶金協會,1994.
    [66]小久保定次郎,賴耿陽,"鋁的表面處理",復漢出版社,1982.
    [67]李正國,溫炯亮,林本源,傅豪,"熱處理",高立圖書有限公司,2000.
    [68]Charlie R. Brooks, "Heat Treating of Nonferrous Alloys,"ASM Handbook, Vol.4, 1991.
    [69]廖德章,"高分子實驗法",高立圖書有限公司,1987.
    [70]Robert N. Wenzel, "Resistance of Solid Surfaces to Wetting by Water," Industrial and Engineering Chemistry, Vol.28, pp.988, 1936.

    QR CODE