簡易檢索 / 詳目顯示

研究生: 郭力瑜
Li-Yu Kuo
論文名稱: Cu3Ge奈米線電性暨Cu3Ge-Ge異質奈米線製備之研究
Electrical Properties of Cu3Ge Nanowires and Synthesis of Cu3Ge-Ge Heterostructure Nanowires
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 葉炳宏
Ping-Hung Yeh
周賢鎧
Shyan-kay Jou
蔡孟霖
Meng-Lin Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 104
中文關鍵詞: 銅化鍺一維材料氧化鋁模板製備退火參數電性結構分析
外文關鍵詞: Cu3Ge, one-dimensional nanomaterial, AAO template, Annealing, Electrical properties, Structural analysis
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究的一維奈米材料包括Cu3Ge奈米線以及Cu3Ge-Ge異質結構奈米線。第一部分為製程,塊材的前置作業為分別取Copper和Germanium之粉末以特定之原子百分比組分封入石英管內,並以氫氧焰之火槍在真空下做過Cu和Ge熔點之融煉。接著放入爐管內加熱至高於材料熔點以上50 oC使Cu和Ge在足夠的溫度及時間內做固態擴散,再冷卻至低於材料熔點150 oC左右,持溫12個小時,製造出溫度梯度之過冷度以控制材料之晶粒大小和形貌。利用Scanning Electron Microscope、Energy Dispersive 和 X-ray Spectrometer做初步的塊材組分確認,進一步利用X-ray Diffractometer以及Raman spectrum做更精確的定量分析。取出塊材,做表面氧化物的去除。運用孔徑100 nm之AAO作為模板,在真空狀態下放入加熱爐升溫至700 oC並持溫10分鐘,確保內外溫度一致性,接著,維持真空狀態下,放入油壓機進行壓力鑄造。再將壓入本研究材料奈米線之AAO模板放入H2Cr2O7(aq) (1.8 wt% CrO3+6 vol% H3PO4)進行3.5個小時的蝕刻,將AAO模板完全移除。另一方面,將壓入材料之AAO模板放入爐管進行熱退火處理,分別在450 oC下做1.5個小時和6個小時之熱處理,目的為使奈米線之銅缺陷能大量消除並且能得到晶粒大小一致性且晶界消除之單晶結構奈米線材。經過熱退火處理之奈米線,因經過熱處理,AAO模板會有再結晶之現象發生,所以需要放入H2Cr2O7(aq)進行4.5個小時之蝕刻處理才能完全移除AAO模板。第二部分為分析,將製備完成之奈米線做初步的Scanning Electron Microscope、X-ray Spectrometer及Raman Spectrum之分析,並運用Transmission Electron Microscope確認材料之成長方向以及材料之缺陷情況。最後是電性分析,利用聚焦離子束及電子束微影系統將灑上本研究材料奈米線之pattern鍍上鉑電極。做兩點以及四點電性分析,並比較未退火和不同退火參數下,材料電阻率之差異。


    In this thesis, two kinds of 1D materials were being investigated, including the Cu¬3Ge nanowires and Cu3Ge-Ge heterostructure nanowires. First part was the fabrication of the nanowires. The pre-operation of the bulk was to take the powder of copper and germanium separately into the quartz tube with a specific atomic percentage component and do the smelting above the melting point of Cu and Ge under the vacuum by the oxyhydrogen flame gun. Then, it was placed in the furnace tube and heated to 50 °C above the melting point of the material to make the solid diffusion of Cu and Ge at a sufficient temperature and time, cooling down to about 150 °C below the melting point of the material, and the temperature was maintained for 12 hours. The undercooling of the temperature gradient was created to control the grain size and morphology of the material. Scanning Electron Microscope and Energy Dispersive X-ray Spectrometer were used to confirm the initial bulk components, and X-ray Diffraction and Raman spectrum were further used for more accurate quantitative analysis. Take out the bulk and removed the surface oxide of bulk. Using AAO with a pore size of 100 nm as a template, and put it into a heating furnace under vacuum and at 700 °C for 10 minutes to ensure the internal and external temperature of the heating furnace was uniform. Next, under a vacuum state, a hydraulic press was placed to perform pressure casting. The nanowire pressed into the AAO template was placed in H2Cr2O7 for 3.5 hours to completely remove the AAO template. On the other hand, the AAO template with the pressed material was placed in a furnace tube for thermal annealing treatment, and heat treatment was performed at 450 ° C for 1.5 hours and 6 hours, respectively. The purpose was to enable the copper defects of the nanowire to be largely eliminated and to obtain a single crystal nanowire with uniform grain size and grain boundary elimination. Due to the heat treatment, the AAO template will recrystallize, so it is necessary to put the sample into H2Cr2O7 (aq) for 4.5 hours to completely remove the AAO template. The second part is that prepared nanowires are used for preliminary SEM, XRD and Raman spectrum analyses. TEM is used to confirm the growth direction of materials and defects in materials. Finally, the electrical analyses which were used a Focused Ion Beam system to connect the pre-pattern substrate and the nanowires with a platinum to do two points and four points of electrical analyses. Compared the material resistivity between as-prepared and different annealing parameters.

    碩士學位論文指導教授推薦書………………………………………….I 碩士學位考試委員審定………………………………………………...II 摘要……………………………………………………………………. III Abstract VIII 致謝 VIIIII List of Abbreviations and Acronyms………………………………….XI List of Figures and Tables………………………………………………II Chapter 1 Introduction………………………………………………….1 1.1 Nanostructure………………………………………………………1 1.1.1 One-Dimensional(1D) Nanostructures……………………….. 2 1.2 Synthesis Method of One Dimensional Nanostructures…………....3 1.2.1 Vacuum Hydraulic Pressure Injection Process………………...4 1.2.2 Heat Treatment………………………………………………...5 1.3 Cu3Ge 1D Material………………………………………………....6 1.3.1 Structure of Cu¬3Ge…………………………………………….7 1.3.2 Fabrication of Cu3Ge Nanowires……………………………...7 1.3.3 Properties of Cu3Ge Material………………………………….8 1.4 Ge Element………………………………………………………..11 1.4.1 Fabrication of Ge-Cu3Ge Nanowires…………………………12 1.5 Heterostructure……………………………………………………15 1.5.1 Phase Separation……………………………………………..17 1.5.2 Selective Etching……………………………………………..18 Chapter 2 Experimental Section............................................................20 2.1 Synthesis of Cu3Ge Nanowires…………………………………....20 2.1.1 Preparation of Cu¬3Ge Bulks………………………………….20 2.1.2 Fabrication of Cu3Ge Nanowires……………………………..21 2.1.3 AAO Template Removing Process…………………………...22 2.1.4 Annealing of Cu3Ge Nanowires……………………………...23 2.2 Synthesis of Ge-Cu3Ge Heterostructure Nanowires………………26 2.2.1 Preparation of Ge-Cu3Ge Bulks……………………………...26 2.2.2 Fabrication of Ge-Cu3Ge Nanowires…………………………26 2.2.3 AAO Template Removing Process…………………………...27 2.3. Scanning Electron Microscope…………………………………...31 2.3.2 Transmission Electron Microscope…………………………..31 2.3.3 Energy Dispersion Spectrometer……………………………..32 2.3.4 X-ray Diffractometer…………………………………………32 2.3.5 Raman Spectrum……………………………………………..33 Chapter 3 Results and Discussions………………………………….....35 3.1 Motivation…………………………………...................................35 3.1.1 Structure of Cu3Ge Nanowires…………………………….....36 3.1.2 The SEM of Cu3Ge Bulks and Cu3Ge Nanowires……………36 3.1.3 The SEM of Cu3Ge Nanowires With Heat Treatment………..42 3.2 XRD Spectrum…………………………………………………....47 3.2.1 Raman Spectrum …………………………………………….50 3.2.2 TEM Evidence ……………………………………………….52 3.2.3 Electrical Properties Measurement of Cu3Ge Nanowires by Annealing in 450 oC for 1.5 hr………………………………………..55 3.3 Structure of Cu3Ge-Ge Heterostructure Nanowires……………....57 3.3.1 The SEM of Cu3Ge-Ge Bulks and Cu3Ge-Ge Heterostructure Nanowires……………………………………………………………….57 3.3.2 XRD Spectrum….……………………………………………64 3.3.3 Raman Spectrum……………………………………………..66 Chapter 4 Summary and Conclusion……………………………........69 Chapter 5 Future Works…………………………………………........70 Reference…………………………………………………………….....71 Appendix……………………………………………………………….83

    [1] X. Cheng , Texas A&M University, “Nanostructures: fabrication and applications”, Woodhead Publishing Limited, 2014
    [2] Guzeliya Korneva, Haihui Ye, Yury Gogotsi, Derek Halverson, Gary Friedman, Jean-Claude Bradley and Konstantin G. Kornev, “Carbon Nanotubes Loaded with Magnetic Particles”, Nano Lett, 2005, 5, 879-884.
    [3] S. Iijima and T. Ichihashi, “Single=shell carbon nanotubes of 1 nm diameter”, Nature, 1993, 363, 603-607.
    [4] P. Yang and C. M. Lieber, “Nanorod-superconductor composites: A pathway to materials with high critical current densities”, Science, 1996, 273, 1836-1841.
    [5] Z. L Wang, “Nanowires and nanobelts-materials, properties and devices: Vol-I:Metal and semiconductor nanowires”, Kluwer Academic Publisher, 2003.
    [6] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Advanced Materials, 2003, 15, 353-389.
    [7] Chen-Ho Lai , Ming-Yen Lu and Lih-Juann Chen, “Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage”, J. Mater. Chem., 2012, 22, 19-30.
    [8] Y M Chen, J H Cai, Y S Huang, K Y Lee and D S Tsai, “Preparation and characterization of iridium dioxide–carbon nanotube nanocomposites for supercapacitors”, Nanotechnology, 2011, 22, 1157061-1157067.
    [9] Erfan Mafakheri, Abdollah Salimi, Rahman Hallaj, Abdolali Ramazani and Mohamad Almasi Kashi, “Synthesis of Iridium Oxide Nanotubes by Electrodeposition into Polycarbonate Template: Fabrication of Chromium(III) and Arsenic(III) Electrochemical Sensor”, Electroanalysis, 2011, 23, 2429-2437.
    [10] C.R. Martin, “Nanomaterials: A membrane-based synthetic approach”, Science, 1994, 266, 1961-1966.
    [11] A. Huczko, “Template-based synthesis of nanomaterials”, Applied Physics A, 2000, 70, 365-376.
    [12] C. R. Martin, “Membrane-based synthesis of nanomaterials”, Chemistry of Materials, 1996, 8, 1739-1746.
    [13] S Valizadeh, M Abid, F Hernández-Ramírez, A Romano Rodríguez, K Hjort and J Å Schweitz, “Template synthesis and forming electrical contacts to single Au nanowires by focused ion beam techniques”, Nanotechnology, 2007, 17, 1134-1139.
    [14] C. Xu, L. Zhang, H. Zhang and H. Li, “Well-dispersed gold nanowire suspension for assembly application”, Applied Surface Science, 2005, 252, 1182-1186.
    [15] C. K Hu and J.M.E. Harper, “Copper interconnections and reliability”, Materials Chemistry and Physics, 1998, 52, 5-12.
    [16] SQ Hong, CM Comrie, SW Russell and JW Mayer, “Phase Formation in Copper-Silicon and Copper Germanium”, J. Appl. Phys, 1991, 70, 3655-3659.
    [17] L. Krusin-Elbaum and M. Aboelfotoh, “Unusually low resistivity of copper germanide thin films formed at low temperatures”, Appl. Phys. Lett, 1998 58, 1341-1345.
    [18] H. K. Kim, H. K. Liou, and K. N. Tu, “Three‐dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu”, Appl. Phys. Lett, 1995, 66, 2337
    [19] M. O. Aboelfotoh and B. G. Svensson, “Copper passivation of boron in silicon and boron reactivation kinetics”, Phys. Rev. B, 1991, 44, 12742-12747.
    [20] MO Aboelfotoh, MJ Brady, L Krusin-Elbaum, “Compound with room temperature electrical resistivity comparable to that of elemental copper”, US Patent, 1998, 5, 288, 456-460.
    [21] H. M. Tawancy and M. O. Aboelfotoh, “Effect of phase transitions in copper-germanium thin film alloys on their electrical resistivity”, Journal of Materials Science, 1995, 30, 6053-6064.
    [22] Kris A. Darling, R.K. Guduru, C. Lewis Reynolds Jr, Vikram M. Bhosle, Ryan N. Chan, Ronald O. Scattergood, Carl C. Koch, J. Narayan and M.O. Aboelfotoh, “Thermal stability, mechanical and electrical properties of nanocrystalline Cu3Ge”, K.A. Darling et al. / Intermetallics, 2008, 16, 378-383.
    [23] Xianyu Liua, Ning Lina, Kangli Xua, Ying Hana, Yue Lua, Yingyue Zhaoa, Jianbin Zhoua, Zheng Yia, Changhe Caob, Yitai Qian, “Cu3Ge/Ge@C nanocomposites crosslinked by the in situ formed carbon nanotubes for high-rate lithium storage”, Chemical Engineering Journal, 2018, 352, 206–213.
    [24] Chuanjian Zhang, Fenglian Chai, Lin Fu, Pu Hu, Shuping Panga and Guanglei Cui, “Lithium storage in a highly conductive Cu3Ge boosted Ge/graphene aerogel”, J. Mater. Chem. A, 2015, 3, 22552–22556.
    [25] William R.Frensley, “Chapter1 - Heterostructure and Quantum Well Physics”, Elsevier, 1994, 24, 1-24.
    [26] Paul Alivisatos, “The use of nanocrystals in biological detection”, Nature Biotechnology, 2004, 22, 47-52.
    [27] Dayang Wang, Andrey L. Rogach and Frank Caruso, “Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly”, Nano Lett, 2002, 2, 857-861.
    [28] F Zhang, R Jin, J Chen, C Shao, W Gao, L Li, N Guan, “High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters”, Journal of Catalysis, 2005, 232, 424-431.
    [29] JJ Wu, CH Tseng, “Photocatalytic properties of nc-Au/ZnO nanorod composites”, Applied Catalysis B: Environmental, 2006, 66, 51–57.
    [30] MS Lee, SS Hong, M Mohseni, “Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent”, Journal of Molecular Catalysis A: Chemical, 2005, 242, 135-140.
    [31] T Hirakawa, PV Kamat, “Charge Separation and Catalytic Activity of Ag@TiO2 Core−Shell Composite Clusters under UV−Irradiation”, J. Am. Chem. Soc.2005, 127, 3928-3934.
    [32] N Liu, BS Prall and VI Klimov, “Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor− metal interactions”, J. Am. Chem. Soc, 2006, 128, 15362-15363.
    [33] J Choi, Y Jun, SI Yeon, HC Kim and JS Shin, “Biocompatible heterostructured nanoparticles for multimodal biological detection”, J. Am. Chem. Soc, 2006, 128, 15982-15983.
    [34] JY Lao, JG Wen and ZF Ren, “Hierarchical ZnO nanostructures”, Nano Lett, 2002, 2, 1287-1291.
    [35] Y Jung, DK Ko and R Agarwal, “Synthesis and structural characterization of single-crystalline branched nanowire heterostructures”, Nano Lett.2007, 7, 264-268.
    [36] C Ye, Y Bando, G Shen, D Golberg, “Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets”, J. Phys. Chem. B, 2006, 110, 15146-15151.
    [37] Zheng, Y. Cheng, Y. Wang, Y. Bao, F. Zhou, L. Wei, X. Zhang, Y. Zheng, Q. “Quasicubic α-Fe2O¬3 Nanoparticles with Excellent Catalytic Performance”, J. Phys. Chem. B, 2006, 110, 3093-3097.
    [38] Yuanhui Zheng, Chongqi Chen, Yingying Zhan, Xingyi Lin, Qi Zheng,
    Kemei Wei, Jiefang Zhu and Yingjie Zhu, “Luminescence and Photocatalytic Activity of ZnO Nanocrystals:  Correlation between Structure and Property”, Inorg. Chem. 2007, 46, 6675-6682.
    [39] Yuanhui Zheng, Lirong Zheng, Yingying Zhan, Xingyi Lin, Qi Zheng and Kemei Wei, “Ag/ZnO Heterostructure Nanocrystals:  Synthesis, Characterization, and Photocatalysis”, Inorg. Chem. 2007, 46, 6980-6986.
    [40] Steven J. Koester, Senior Member, IEEE, Jeremy D. Schaub, Member, IEEE, Gabriel Dehlinger, and Jack O. Chu, “Germanium-on-SOI Infrared Detectors for Integrated Photonic Applications”, IEEE, 2006, 12, 1489-1502.
    [41] Matteo Bosi, Giovanni Attolini, “Germanium: Epitaxy and its applications”, Progress in Crystal Growth and Characterization of Materials, 2010, 56, 146-174.
    [42] Sami Rosenblatt, Yuval Yaish, Jiwoong Park, Jeff Gore, Vera Sazonova and Paul L. McEuen, “ High Performance Electrolyte Gated Carbon Nanotube Transistors”, Nano Lett. 2002, 2, 869-872.
    [43] Zhen Yao, Charles L. Kane, and Cees Dekker, “High-Field Electrical Transport in Single-Wall Carbon Nanotubes”, Phys. Rev. Lett, 2000, 84, 2941-2944.
    [44] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “ Single- and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett. 1998, 73, 2447-2450.
    [45] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke and Ph. Avouris, “Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes”, Appl. Phys. Lett. 2002, 80, 3817-3820..
    [46] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, and Ph. Avouris, “Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes”, Phys. Rev. Lett. 87, 2001,2568051-256804..
    [47] Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang and Charles M. Lieber, “ Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”, Nature 2000, 409, 66-69.
    [48] Yi Cui, Xiang feng, Duan Jiangtao Hu and Charles M. Lieber, “Doping and Electrical Transport in Silicon Nanowires”, J. Phys. Chem. B, 2000, 104, 5213-5216.
    [49] Yu Huang1, Xiangfeng Duan, Qingqiao Wei and Charles M. Lieber, “Directed Assembly of One-Dimensional Nanostructures into Functional Networks”, Science, 2001, 291, 630-633.
    [50] X Duan, Y Huang, CM Lieber, “Nonvolatile memory and programmable logic from molecule-gated nanowires”, Nano Lett. 2002, 2, 487-490
    [51] A Javey, SW Nam, RS Friedman, H Yan and CM Lieber, “ Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics”, . Nano Lett. 2007, 7, 773-777.
    [52] Y Cui and CM Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks”, Science, 2000, 291, 851-853.
    [53] Zheng, G. Patolsky, F. Cui, Y. Wang, W. U, Lieber, C. M, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays”, Nat. Biotechnol. 2005, 23, 1294-1301.
    [54] Gradecak, S. Qian, F. Li, Y. Park, H. Lieber, C. M, “GaN nanowire lasers with low lasing thresholds”, Appl. Phys. Lett, 2005, 87, 1731111-1731114.
    [55] R Agarwal, CJ Barrelet, CM Lieber, “Lasing in single cadmium sulfide nanowire optical cavities”, Nano Lett. 2005, 5, 917-920.
    [56] H Pettersson, J Trägårdh, AI Persson, and L Landin, “Infrared photodetectors in heterostructure nanowires”, Nano Lett. 2006, 6, 229-232.
    [57] Moore, G. E, “Ramming more components onto integrated circuits”, Electronics. 1965, 38, 8.
    [58] J Xiang, W Lu, Y Hu, Y Wu, H Yan and CM Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors”, Nature 2006, 441, 489-493.
    [59] Lu, W. Xiang, J. Timko, B. P. Wu, Y and Lieber, C. M, “One-dimensional hole gas in germanium/silicon nanowire heterostructures”, Proc. Nat. Acad. Sci. U.S.A. 2005, 102, 10046-10051.
    [60] MB Prince, “Drift mobilities in semiconductors. I. Germanium”, Bell Teleph. Lab, 1953, 92, 681-687.
    [61] John W. Cahn, “Phase separation by spinodal decomposition in isotropic systems”, The Journal of Chemical Physics, 1965, 42, 93-99.
    [62] J. W. Gibbs, Collected Works (Yale University Press, New Haven, Connecticut, 1948, 1, 105-115.
    [63] Y. Xu, X. Zhu, X. Zhou, X. Liu, Y. Liu, Z. Dai and J. Bao, “ Understanding the Effect of Different Polymeric Surfactants on Enhancing the Silicon/Reduced Graphene Oxide Anode Performance”, Chem. C, 2014, 118, 28502-28508.
    [64] H. D. Fuchs, P. Etchegoin, and M. Cardona, “ Vibrational Band Modes in Germanium: Isotopic Disorder-Induced Raman Scattering”, PH YSICAL REVIEW LETTERS, 1993, 70, 1715-1718.
    [65] Krusin-Elbaum, L. and Aboelfotoh, M. O. Unusually, “low resistivity of copper germanide thin films formed at low temperatures”, Appl. Phys. Lett,1991, 58, 1341-1343.
    [66] Doyle, J. P., Svensson, B. G. and Aboelfotoh, M. O, “Copper germanide Schottky barrier contacts to silicon”, J. Appl. Phys, 1996, 80, 2530-2532

    無法下載圖示 全文公開日期 2024/08/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE