簡易檢索 / 詳目顯示

研究生: 黃信富
Hsin-Fu Huang
論文名稱: 以臨場拉曼光譜探討充放電過程中層狀過量鋰陰極材料及STOBA添加劑之變化
In-situ Raman Investigation on Lithium-rich Layered Cathode Materials and STOBA Additives upon Cycling
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 王復民
none
陳景翔
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: 過量鋰層狀材料結構分析臨場X光繞射分析臨場拉曼光譜鋰離子電池自身終止高分歧寡聚物熱失控麥可加成反應自由基聚合反應
外文關鍵詞: layered Lithium-rich material, structure analysis, in-situ XRD, in-situ Raman, Lithium ion battery, STOBA, thermal runaway, Michael addition reaction, free radical polymerization reaction
相關次數: 點閱:373下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對過量鋰層狀材料結構的變化,藉由臨場分析技術進行結構變化的分析,以獲得在不同狀態下材料結構變化的趨勢。經臨場X光繞射分析得知,當充電至>4.4V時可發現異相結構特徵峰的產生,顯示材料充電至高電壓區段時,因結構的不穩定及氧缺陷的產生,將造成結構的轉變,而當放電至2V時可發現異質結構繞射峰(Li1-xMn2O4(400))的產生,其可能是Mn還原所造成的結構轉變。另外由臨場拉曼檢測分析得知,當過充電至5V時,將提升過渡金屬的遷移及氧空缺的生成,造成表面結構應力的增加及結構的局部扭曲,進而導致材料表面尖晶狀異質結構區域的增加。而這些尖晶狀異質結構,應為極化現象發生的主因。
    自身終止高分歧寡聚物(self terminated oligomers with hyper branched architecture, STOBA),近年來被添加於鋰離子電池中,以提供高度安全保護機制,防止熱失控產生爆炸的現象。其反應機制包含互相競爭之麥可加成反應(Michael addition reaction)與自由基聚合反應(Free radical polymerizations reaction)。本研究主要針對不同Barbituric acid (BTA、1,3-dimethylbarbituric acid、5,5-dimethylbarbituric acid)單體與N,N’-bismaleimide-4,4’-diphenylmethane (BMI)合成之STOBA,於熱效應及電壓效應下,藉由臨場拉曼增強光譜分析其反應機制的趨勢。實驗結果可知,BTA與1,3BTA所合成的STOBA其特徵峰訊號隨溫度的升高而下降,顯示材料逐漸構築成綿密的立體保護網。然而5,5BTA所合成的STOBA反應性較慢與BMI的聚合程度低,由此可知C=C雙鍵容易與C-H鍵反應形成完整的保護膜,但不易與N-H鍵上的氫反應,因此需要較高的溫度以及較長的時間才能有聚合交聯的發生。


    In this work, we focus on the observation of layered Lithium rich material structure by in-situ analysis technology during charge-discharge steps. From in-situ XRD analysis, the peaks for heterogeneous structure appear when charged over 4.4V. It means the structure of cathode material is unstable at high potential and due to the formation of oxygen vacancy which caused metal transition in the structure. When discharged to 2V, the structure also changed and the diffraction peak of (Li1-xMn2O4(400)) can be found from Mn reduction. After that, in-situ Raman spectrum analysis revealed that when cathode material over charged to 5V, the migration of transition metal and the formation of oxygen vacancy can be increased, resulting in the enhancement of surface stresses and local structure distortion. Furthermore it increased the spinel-like heterogeneous structure on material’s surface which supposed to be the main reason of polarization.
    Self terminated oligomers with hyper branched architecture (STOBA) are added into Lithium ion battery to provide high safety protection mechanism and prevent thermal runaway explosion in recent years. The two major competitive reactions include Michael addition reaction and free radical polymerizations reaction. In this work, we studied STOBAs reaction mechanisms using different Barbituric acids (BTA, 1,3-dimethylbarbituric acid, 5,5-dimethylbarbituric) with N,N’-bismaleimide-4,4’-diphenylmethane (BMI) monomer under thermal treatment and potential treatment by in-situ SERS. Compared to the results, STOBAs’ vibration peaks decreased during the temperature change when using BTA and 1,3BTA with BMI. It reveals that STOBA gradually crosslinked and built a dense three-dimensional network protection film. However the polymerization of 5,5BTA with BMI is slow and hard to identify its molecular vibration change. Above all, C=C double bond is more likely to react with C-H bond to form the completely film while C=C double bond needs longer time or higher temperature to trigger the polymerization of STOBA in N-H bond.

    摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1.1. 前言 1 1.2. 鋰離子二次電池的發展 2 1.2.1. 陰極(正極) 6 1.2.2. 陽極(負極) 13 1.2.3. 電解液 16 1.2.4. 隔離膜 22 1.3. 研究動機與目的 23 第2章 文獻回顧 25 2.1. 過量鋰陰極材料 25 2.1.1. Li[Li1/3-2x/3NixMn2/3-x/3]陰極材料 26 2.2. STOBA添加劑 35 2.2.1. STOBA特性及機制 35 2.2.2. 鋰電池應用 40 2.3. 拉曼光譜分析技術 43 2.3.1. 拉曼光譜學 43 2.3.2. 表面增強拉曼光譜分析技術 47 第3章 實驗方法與儀器設備 50 3.1. 儀器設備 50 3.2. 實驗藥品 52 3.3. 實驗步驟及分析 53 3.3.1. 臨場鈕扣型電池之組裝 53 3.3.2. 過量鋰臨場X光繞射檢測 55 3.3.3. 過量鋰臨場拉曼檢測 56 3.3.4. 過量鋰電化學測試 57 3.3.5. 奈米銀粒子的製備 58 3.3.6. 金之氧化還原反應 60 3.3.7. STOBA拉曼結構分析 61 3.3.8. STOBA臨場熱效應及電壓效應之拉曼光譜分析 ……………………………………………………62 第4章 結果與討論 64 4.1. 過量鋰陰極材料臨場分析 64 4.1.1. 臨場X光繞射分析 64 4.1.2. 臨場拉曼光譜分析 68 4.1.3. 電化學特性測試 72 4.2. STOBA材料之表面增強拉曼光譜鑑定 74 4.2.1. STOBA基本結構鑑定 74 4.2.2. 不同溫度下STOBA結構變化 81 4.2.3. 不同電壓下STOBA結構變化 86 第5章 結論 90 未來展望 93 參考文獻 94

    [1] 林振華、林振富, 充電式鋰離子電池之材料與應用.
    [2] 陳金銘, "電動車動力鋰電池材料技術趨勢," 工研院電子報, 2011.
    [3] 鄭如翔、黃炳照, "鋰離子電池正極材料之發展," Chemical Engerneering(The Taiwan I.Ch.E), vol. 58, 2011.
    [4] L. F. Nazar, X. Ji, and K. T. Lee, "A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries," Nature Materials, vol. 8, pp. 500-506, 2009.
    [5] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy & Environmental Science, vol. 4, p. 3243, 2011.
    [6] B. L. Ellis, K. T. Lee, and L. F. Nazar, "Positive Electrode Materials for Li-Ion and Li-Batteries†," Chemistry of Materials, vol. 22, pp. 691-714, 2010.
    [7] J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, et al., "A Critical Review of Li/Air Batteries," Journal of The Electrochemical Society, vol. 159, p. R1, 2012.
    [8] A. Manthiram, A. Vadivel Murugan, A. Sarkar, and T. Muraliganth, "Nanostructured electrode materials for electrochemical energy storage and conversion," Energy & Environmental Science, vol. 1, pp. 621-638, 2008.
    [9] J. P. Mizushima K, Wiseman PJ, Goodenough JB, "LixCoO2 (0≦x≦1): A new cathode material for batteries of high energy density," Materials Research Bulletin, vol. 15, 1980.
    [10] J. W. Fergus, "Recent developments in cathode materials for lithium ion batteries," Journal of Power Sources, vol. 195, pp. 939-954, 2010.
    [11] Y. Huang, J. Chen, J. Ni, H. Zhou, and X. Zhang, "A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2," Journal of Power Sources, vol. 188, pp. 538-545, 2009.
    [12] N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai, and S. Komaba, "Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2," Journal of the American Chemical Society, vol. 133, pp. 4404-4419, 2011.
    [13] M. M. Thackeray, David, W. I. F., Bruce, P. G. & Goodenough, J. B., "Lithium insertion into manganese spinels," Materials Research Bulletin, vol. 18, 1983.
    [14] C. Qing, Bai, Y., Yang, J., Zhang, W, "Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating," Electrochimica Acta, vol. 56, 2011.
    [15] H. Şahan, Göktepe, H., Patat, S. , Ülgen, A. , "Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications," Solid State Ionics, vol. 181, 2010.
    [16] K. A. a. Walz, Johnson, C.S.b, Genthe, J.a, Stoiber, L.C.a, Zeltner, W.A.a, Anderson, M.A.a, Thackeray, M.M.b, "Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings," Journal of Power Sources, vol. 195, 2010.
    [17] H. Şahan, Göktepe, H., Patat, Ş. , "A Novel Method to Improve the Electrochemical Performance of LiMn2O4 Cathode Active Material by CaCO3 Surface Coating," Journal of Materials Science and Technology, vol. 27, 2011.
    [18] A. K. Padhi, Nanjundaswamy, K. S. & Goodenough, J. B., "Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries.," Journal of the Electrochemical Society, vol. 144, 1997.
    [19] S. Wang, C. Zhou, Q. Zhou, G. Ni, and J. Wu, "Preparation of LiFePO4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose," Journal of Power Sources, 2011.
    [20] S.-M. Oh, Oh, S.-W., Yoon, C.-S., Scrosati, B., Amine, K., Sun, Y.-K., "High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries " Advanced Functional Materials, vol. 20, 2010.
    [21] H. H. Li, Jin, J., Wei, J.P., Zhou, Z., Yan, J., "Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances " Electrochemistry Communications, vol. 11 2009.
    [22] K. a. Saravanan, Vittal, J.J.a , Reddy, M.V.b, Chowdari, B.V.R.b, Balaya, P., "Storage performance of LiFe 1-xMn xPO 4 nanoplates (x=0, 0.5, and 1)," Journal of Solid State Electrochemistry, vol. 14, 2010.
    [23] Y.-U. P. Jongsoon Kim, Dong-Hwa Seo,Jinsoo Kim, Sung-Wook Kim, and Kisuk Kang, "Mg and Fe Co-doped Mn Based Olivine Cathode Material for High Power Capability," J. Electrochem. Soc., vol. 158, 2011.
    [24] K. Saravanan, Ramar, V., Balaya, P. , Vittal, J.J. , "Li(MnxFe1-x)PO4/C (x = 0.5, 0.75 and 1) nanoplates for lithium storage application," Journal of Materials Chemistry, vol. 21, 2011.
    [25] G. Li, Azuma, H., Tohda, M., "LiMnPO4 as the cathode for lithium batteries," Electrochemical and Solid-State Letters, vol. 5, 2002.
    [26] K. Amine, Yasuda, H., Yamachi, M., "Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries," Electrochemical and Solid-State Letters, vol. 3, 2000.
    [27] J. Wolfenstine, Allen, J., "Ni3+/Ni2+ redox potential in LiNiPO4 " Journal of Power Sources, vol. 142, 2005.
    [28] Z. Gong and Y. Yang, "Recent advances in the research of polyanion-type cathode materials for Li-ion batteries," Energy & Environmental Science, vol. 4, p. 3223, 2011.
    [29] R. D. auh, Abraham, K.M., Pearson, G.F., Surprenant, J.K., Brummer, S.B., "LITHIUM/DISSOLVED SULFUR BATTERY WITH AN ORGANIC ELECTROLYTE. ," Journal of The Electrochemical Society, vol. 126, 1979.
    [30] H. Yamin, Peled, E., "Electrochemistry of a nonaqueous lithium/sulfur cell " Journal of Power Sources, vol. 9, 1983.
    [31] 狩. 浩志, "【技術講座】電池開發呈多樣化,更加注重安全性能," in 《日經電子》, ed, 2012.
    [32] B. Scrosati, J. Hassoun, and Y.-K. Sun, "Lithium-ion batteries. A look into the future," Energy & Environmental Science, vol. 4, p. 3287, 2011.
    [33] W. Wilcke. (2012). The Battery 500 Project. Available: http://www.ibm.com/smarterplanet/us/en/smart_grid/article/battery500.html?lnk=ibmhpcs2/smarter_planet/energy/article/battery_500
    [34] M. Zanini, Basu, S., Fischer, J.E., "alternate synthesis and reflectivity spectrum of stage 1 lithium-graphite intercalation compound " Carbon, vol. 16, 1978.
    [35] B. T. L. ink, "Rechargeable battery " US Patent, 1981.
    [36] 林素琴, "鋰電池材料發展分析 " 工研院電子報, 2009.
    [37] R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, "A review of advanced and practical lithium battery materials," Journal of Materials Chemistry, vol. 21, p. 9938, 2011.
    [38] A. Yoshino, "These ten years and feature of rechargeable battery materials," p. 110, 2003.
    [39] D. Guyomard and J. M. Tarascon, "Rechargeable Li<sub>1+x</sub>Mn<sub>2</sub>O<sub>4</sub>carbon cells with a new electrolyte composition," Journal of the Electrochemical Society, vol. 140, pp. 3071-3081, 1993.
    [40] J. Barthel, R. Neueder, M. Poxleitner, J. Seitz-Beywl, and L. Werblan, "Conductivity of lithium perchlorate in propylene carbonate + acetonitrile mixtures from infinite dilution to saturation at temperatures from - 35 to 35°C," Journal of Electroanalytical Chemistry, vol. 344, pp. 249-267, 1993.
    [41] E. J. Plichta and W. K. Behl, "Rechargeable ambient temperature rocking-chair lithium cell employing a solution of lithium hexafluoroarsenate in acetonitrile as the electrolyte," Journal of the Electrochemical Society, vol. 140, pp. 46-49, 1993.
    [42] 黃裕豪, "鋰離子電池錫碳複合陽極材料的電化學行為," 國立台灣科技大學化學工程學系研究所碩士學位論文, 93學年度.
    [43] 呂學隆, "鋰電池電解液產業在兩岸的發展現況," 工業材料雜誌, vol. 289, 2011.
    [44] E. Peled, "The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model," J. Electrochem. Soc., vol. 126, p. 2047, 1979.
    [45] G. D. Peled E., Ardel G., Menachem C., Bar-Tow D. and and E. V, "Role of sei in lithium and lithium ion batteries " Mat. Res. Soc. Symp., vol. 393, pp. 209-221, 1995.
    [46] G. D. a. P. J. Peled E. (1998). Anode/Electrolyte Interface. pp. 410-457.
    [47] M. C. Peled E., Bar-Tow D. and Melman A., "improved graphite anode for lithium-ion batteries: Chemically bonded solid electrolyte interface and nanochannel formation " J. Electrochem. Soc., vol. 143, pp. L4-L7, 1996.
    [48] P. E, "in Rechargeable Lithium and Lithium-Ion Batteries, The Electrochem. Soc. Proceedings Series, ed. by Megahed S., Barnett B. M. and Xie L. (1995), 94-28, 1.
    ."
    [49] (2004). Lithium-Ion_Batteries_Solid-Electrolyte_Interphase.
    [50] 楊模樺, "鋰電池材料技術發展," 工業材料雜誌 2006, vol. 237:137.
    [51] K. M. Abraham, "Recent developments in secondary lithium battery technology," Journal of Power Sources, vol. 14, pp. 179-191, 1985.
    [52] J. B. Goodenough and Y. Kim, "Challenges for rechargeable Li batteries," Chemistry of Materials, vol. 22, pp. 587-603, 2010.
    [53] E. Peled, D. Golodnitsky, and G. Ardel, "Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes," Journal of The Electrochemical Society, vol. 144, pp. L208-L210, August 1, 1997 1997.
    [54] M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, et al., "Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries," ACS Nano, vol. 7, pp. 760-767, 2013/01/22 2013.
    [55] J. Zheng, M. Gu, J. Xiao, P. Zuo, C. Wang, and J.-G. Zhang, "Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process," Nano letters, vol. 13, pp. 3824-3830, 2013.
    [56] Y. Wang, X. Yan, X. Bie, Q. Fu, F. Du, G. Chen, et al., "Effects of Aging in Electrolyte on the Structural and Electrochemical Properties of the Li [Li 0.18 Ni 0.15 Co 0.15 Mn 0.52] O 2 Cathode Material," Electrochimica Acta, vol. 116, pp. 250-257, 2014.
    [57] S. Hy, F. Felix, J. Rick, W.-N. Su, and B. J. Hwang, "Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li [Ni x Li (1–2 x)/3Mn (2–x)/3] O2 (0≤ x≤ 0.5)," Journal of the American Chemical Society, vol. 136, pp. 999-1007, 2014.
    [58] J.-i. Yamaki, S.-i. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, "A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte," Journal of Power Sources, vol. 74, pp. 219-227, 1998.
    [59] C. Delmas, J.-J. Braconnier, and P. Hagenmuller, "A new variety of LiCoO 2 with an unusual oxygen packing obtained by exchange reaction," Materials Research Bulletin, vol. 17, pp. 117-123, 1982.
    [60] J. Molenda, A. Stokłosa, and T. Ba̧k, "Modification in the electronic structure of cobalt bronze Li x CoO 2 and the resulting electrochemical properties," Solid State Ionics, vol. 36, pp. 53-58, 1989.
    [61] S. Passerini, B. Scrosati, and A. Gorenstein, "The intercalation of lithium in nickel oxide and its electrochromic properties," Journal of the Electrochemical Society, vol. 137, pp. 3297-3300, 1990.
    [62] J. Dahn, U. von Sacken, and C. Michal, "Structure and electrochemistry of Li 1±y NiO 2 and a new Li 2 NiO 2 phase with the Ni (OH) 2 structure," Solid State Ionics, vol. 44, pp. 87-97, 1990.
    [63] Y. Shao‐Horn, S. Hackney, A. Armstrong, P. Bruce, R. Gitzendanner, C. Johnson, et al., "Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging," Journal of the Electrochemical Society, vol. 146, pp. 2404-2412, 1999.
    [64] K. Numata, C. Sakaki, and S. Yamanaka, "Synthesis and characterization of layer structured solid solutions in the system of LiCoO 2–Li 2 MnO 3," Solid State Ionics, vol. 117, pp. 257-263, 1999.
    [65] Z. Lu and J. R. Dahn, "Understanding the anomalous capacity of Li/Li [Ni x Li (1/3− 2x/3) Mn (2/3− x/3)] O 2 cells using in situ X-ray diffraction and electrochemical studies," Journal of The Electrochemical Society, vol. 149, pp. A815-A822, 2002.
    [66] Z. Lu, L. Beaulieu, R. Donaberger, C. Thomas, and J. Dahn, "Synthesis, Structure, and Electrochemical Behavior of Li [Ni x Li1/3− 2x/3Mn2/3− x/3] O 2," Journal of The Electrochemical Society, vol. 149, pp. A778-A791, 2002.
    [67] Z. Lu, D. MacNeil, and J. Dahn, "Layered cathode materials Li [Ni x Li (1/3− 2x/3) Mn (2/3− x/3)] O 2 for lithium-ion batteries," Electrochemical and Solid-State Letters, vol. 4, pp. A191-A194, 2001.
    [68] Y.-S. Hong, Y. J. Park, K. S. Ryu, S. H. Chang, and M. G. Kim, "Synthesis and electrochemical properties of nanocrystalline Li [Ni x Li (1− 2x)/3 Mn (2− x)/3] O 2 prepared by a simple combustion method," Journal of Materials Chemistry, vol. 14, pp. 1424-1429, 2004.
    [69] I. Kwon and M. Y. Song, "Electrochemical properties of LiCo y Mn 2− y O 4 synthesized by the combustion method for lithium secondary battery," Solid State Ionics, vol. 158, pp. 103-111, 2003.
    [70] S. S. Manoharan and K. C. Patil, "Combustion synthesis of metal chromite powders," Journal of the American Ceramic Society, vol. 75, 1992.
    [71] F. Garcia, J. M. Garcia, B. Garcia-Acosta, R. Martinez-Manez, F. Sancenon, and J. Soto, "Pyrylium-containing polymers as sensory materials for the colorimetric sensing of cyanide in water," Chemical Communications, pp. 2790-2792, 2005.
    [72] G. Ceder, Y.-M. Chiang, D. Sadoway, M. Aydinol, Y.-I. Jang, and B. Huang, "Identification of cathode materials for lithium batteries guided by first-principles calculations," Nature, vol. 392, pp. 694-696, 1998.
    [73] W.-S. Yoon, K.-B. Kim, M.-G. Kim, M.-K. Lee, H.-J. Shin, J.-M. Lee, et al., "Oxygen contribution on Li-ion intercalation-deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy," The Journal of Physical Chemistry B, vol. 106, pp. 2526-2532, 2002.
    [74] 楊正平, "行政院2010年傑出科技貢獻獎得獎人潘金平組長專訪—鋰電池防爆「金鐘罩」—STOBA材料技術," 科學發展, vol. 464期, 2011年8月.
    [75] H.-L. Su, J.-M. Hsu, J.-P. Pan, T.-H. Wang, F.-E. Yu, and C.-S. Chern, "Kinetic and structural studies of the polymerization of N,N′-bismaleimide-4,4′-diphenylmethane with barbituric acid," Polymer Engineering & Science, vol. 51, pp. 1188-1197, 2011.
    [76] H.-M. Liu, D. Saikia, H.-C. Wu, C.-Y. Su, T.-H. Wang, Y.-H. Li, et al., "Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries," RSC Adv., vol. 4, pp. 56147-56155, 2014.
    [77] F.-M. Wang, S.-C. Lo, C.-S. Cheng, J.-H. Chen, B.-J. Hwang, and H.-C. Wu, "Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery," Journal of Membrane Science, vol. 368, pp. 165-170, 2011.
    [78] R. Baddour-Hadjean and J.-P. Pereira-Ramos, "Raman microspectrometry applied to the study of electrode materials for lithium batteries," Chemical reviews, vol. 110, pp. 1278-1319, 2009.
    [79] M. Fleischmann, P. J. Hendra, and A. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, pp. 163-166, 1974.
    [80] W. Kiefer and S. Schlücker, Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications: John Wiley & Sons, 2011.
    [81] E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects: Elsevier, 2008.
    [82] "<0953-8984_14_18_202.pdf>."
    [83] K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman scattering: physics and applications vol. 103: Springer Science & Business Media, 2006.
    [84] L. Jensen, C. M. Aikens, and G. C. Schatz, "Electronic structure methods for studying surface-enhanced Raman scattering," Chemical Society Reviews, vol. 37, pp. 1061-1073, 2008.
    [85] A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev., vol. 27, pp. 241-250, 1998.
    [86] E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials, vol. 16, pp. 1685-1706, 2004.
    [87] B. J. H. Y.C. Liu, "Interaction of copper(I)-polypyrrole complexes prepared by depositing± dissolving copper onto and from polypyrroles," Thin Solid Films, vol. 339 pp. 233-239, 1998.
    [88] D. Mohanty, S. Kalnaus, R. A. Meisner, K. J. Rhodes, J. Li, E. A. Payzant, et al., "Structural transformation of a lithium-rich Li 1.2 Co 0.1 Mn 0.55 Ni 0.15 O 2 cathode during high voltage cycling resolved by in situ X-ray diffraction," Journal of Power Sources, vol. 229, pp. 239-248, 2013.
    [89] G. Singh, W. West, J. Soler, and R. S. Katiyar, "In situ Raman spectroscopy of layered solid solution Li 2 MnO 3–LiMO 2 (M= Ni, Mn, Co)," Journal of Power Sources, vol. 218, pp. 34-38, 2012.
    [90] S. Hy, W.-N. Su, J.-M. Chen, and B.-J. Hwang, "Soft X-ray absorption spectroscopic and raman studies on Li1. 2Ni0. 2Mn0. 6O2 for lithium-ion batteries," The Journal of Physical Chemistry C, vol. 116, pp. 25242-25247, 2012.
    [91] S. SEBASTIAN¹, H. T. VARGHESE, Y. S. MARY, and C. Y. PANICKER, "Vibrational spectroscopic and theoretical study of Barbituric acid," Oriental Journal of Chemistry, vol. 26, pp. 1139-1142, 2010.
    [92] S. Chandra, H. Saleem, N. Sundaraganesan, and S. Sebastian, "Experimental and theoretical vibrational spectroscopic and HOMO, LUMO studies of 1, 3-dimethylbarbituric acid," Indian journal of chemistry. Section A, Inorganic, bio-inorganic, physical, theoretical & analytical chemistry, vol. 48, p. 1219, 2009.
    [93] N. Puviarasan, V. Arjunan, and S. Mohan, "FT-IR and FT-Raman studies on 3-aminophthalhydrazide and N-aminophthalimide," Turkish Journal of Chemistry, vol. 26, pp. 323-334, 2002.
    [94] C. Y. Panicker, H. T. Varghese, and T. Thansani, "Spectroscopic studies and Hartree-Fock ab initio calculations of a substituted amide of pyrazine-2-carboxylic acid-C16H18ClN3O," Turkish Journal of Chemistry, vol. 33, pp. 633-646, 2009.
    [95] S. F. Parker, S. M. Mason, and K. P. Williams, "Fourier transform Raman and infrared spectroscopy of N-phenylmaleimide and methylene dianiline bismaleimide," Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 46, pp. 315-321, 1990.

    QR CODE