簡易檢索 / 詳目顯示

研究生: 陳俊佑
Chun-Yu Chen
論文名稱: 鋰電池陰極材料表面修飾對其電池性能增進機制之探討
Investigation of enhanced mechanism of cell performance via surface modification of cathode materials for lithium ion battery
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 費定國
Ting-Kuo Fey
蕭敬業
Ching-Yeh Shiaun
楊模樺
Mo-Hua Yang
謝登存
Deng-Cun Xie
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 208
中文關鍵詞: 鋰電池陰極材料LiCoO2過量鋰氧化鋯表面修飾
外文關鍵詞: Lithium ion battery, cathode material, Surface modification, ZrO2, LiCoO2, Li[Li0.2Ni0.2Mn0.6]O2
相關次數: 點閱:207下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成兩部分,第一部分以氧化鋯表面修飾商品化之LiCoO2,並探討氧化鋯塗層對LiCoO2電池性能增進之機制。分別以、交流阻抗分析、及臨場X光繞射分析,來討論LiCoO2陰極材料於充放電時,其鈷溶解、內部極化現象與結構之變化,以深入了解以表面修飾後,增進其電池性能之原因。
     於實驗中,以0.5 mole%之氧化鋯表面修飾於LiCoO2陰極材料表面上,由穿透式電子顯微鏡可發現在陰極表面上覆蓋一層約40~ 60 nm之氧化鋯。而在鈕扣型電池充放電測試中,於高充電電壓、與高充放電速率時,經表面修飾之LiCoO2皆有較好之性能表現。而在探討電解液之影響,氧化鋯能有效阻隔陰極材料與電解液之接觸,抑制鈷與鈉離子嵌入陰極材料內,造成不可逆電容量的產生。於交流阻抗測試可知,經三十圈充放電循環測試後,表面修飾之LiCoO2能抑制陰極材料本身與電荷轉移之阻抗的增加,使其內部極化現象較小,而能有較好之電池性能。最後在臨場X光繞射分析方面,於第一圈充電狀態時;在高電壓時,可以發現表面修飾之陰極材料,能減緩其結構晶格參數之變化,穩定其結構。相對於未改質之陰極材料,於4.5V時,其結構因大量鋰離子遷出,而造成晶格常數的變化,而此證明經表面修飾後之LiCoO2,能在高電壓下抑制其結構之崩壞,使其在放電時,仍有較高之放電電容量,和較低之不可逆電容量。因此,在增進電池性能的機制中,鈷溶解、陽離子混合效應、結構的穩定性及阻隔與電解液之反應皆扮演一重要之角色。
    第二部分則是繼本研究室研究結果,Li[Li(1-3x)/2NixMn2/3-x/3]O2 這系列組成的陰極材料擁有較高的電容量,由以x=0.2時為一最佳組成,但是也因為這系列的材料於快速率充放電能力不佳的關係,所以將相同以0.1、0.2 mole% ZrO2用來表面修飾Li[Li0.2Ni0.2Mn0.6]O2陰極材料,使其能有更好之電池穩定性和快速充放電之能力。經實驗結果顯示,於速率為10 mA/g,以四十圈循環充放電測試後,以0.2 mole% ZrO2表面修飾之陰極材料,其衰退率只有1.7%,優於未改質與0.1 mole%的5.1%、5%。證實經ZrO2表面修飾之Li[Li0.2Ni0.2Mn0.6]O2陰極材料,亦仍增進其充放電性能。


    The study was divided two parts. The first part was to discuss the effect of the zirconia coating on LiCoO2 to the performances of cathode materials in lithium batteries. The mechanism for improving the charging potential and charging- discharging rate of the zirconia-coated LiCoO2 were investigated. For the purpose, in-situ X-ray diffraction analysis of the synthesized zirconia- coated LiCoO2 was studied to realize the variation of the unit cell during charging-discharging process. Further, AC impedance spectroscopy of the synthesized materials was investigated at different charging states to observe the function of the surfaced zirconia to impedance distribution of the batteries. The electrolyte composition was also modified for examining the dissolution of cobalt during charging-discharging process.
    From TEM analysis, it was clearly shown that one thin layer of 0.5 mole% zirconia-coated LiCoO2 with a thickness about 40-60 nm. The charging-discharging tests of the zirconia-coated LiCoO2 revealed better capacity retention at high C-rate and high charging potential. For the study of the cobalt dissolution by the modified electrolyte, the surfaced zirconia was capable to insulate the electrolyte from LiCoO2. Therefore, the cobalt and sodium ions intercalated into LiCoO2 were not possible. From AC impedance analysis, the zirconia-coated LiCoO2 showed better restriction to increase of bulk resistance and charge transfer resistance. Thus, better cell performance was revealed. Finally for in-situ X-ray diffraction analysis, the change in the cell parameters of the zirconia- coated LiCoO2 was decreased when comparing with that of bare LiCoO2 charged to 4.5V. The decrease in the parameter variation of the zirconia-coated LiCoO2 unit cell showed strong evidence to restrict the crystalline structure collapse when charging to higher potential. Thus, the materials exhibited higher discharging capacity and lower irreversible capacity.
    The second part dealt with the studies on the zirconia-coated Li[Li(1-3x)/2NixMn2/3-x/3]O2. In the previous results from our lab., materials with x=0.2 showed the highest capacity, however, the poor conductivity made itself difficult to cycle at higher C-rate. Thus, in this study, the synthesized Li[Li(1-3x)/2NixMn2/3-x/3]O2 was coated respectively by 0.1 mole% and 0.2 mole% zirconia to improve the stability and ability of high C-rate cycling. It revealed that the 0.2 mole% zirconia-coated Li[Li(1-3x)/2NixMn2/3-x/3]O2 showed better capacity retention after 40 cycles with charging-discharging rate of 10 mAg-1. The capacity loss was merely 1.7% where that of 0.1 mole% zirconia-coated and bare Li[Li(1-3x)/2NixMn2/3-x/3]O2 were 5.1% and 5.0%, respectively. It also indicated the surfaced zirconia did improve the performance of Li[Li(1-3x)/2NixMn2/3-x/3]O2.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………III 致謝…………………………………………………………………VI 目錄…………………………………………………………………VII 圖目錄………………………………………………………………XI 表目錄….…………………………………………………...……....XVII 第一章 緒論…………………………………………………………..1 1.1前言…………………………………………………………………1 1.2研究動機與目的……………………………………………………3 第二章 文獻回顧…………………………………..…………………..4 2.1鋰離子二次電池……………………………………………………4 2.1.1 陽極……………………………………………………………5 2.1.2 電解質…………………………………………………………6 2.1.3 陰極……………………………………………………………7 2.2鋰離子電池陰極材料發展之文獻回顧……………………….…...9 2.2.1 LiCoO2層狀結構之陰極材料…………………………...9 2.2.2 LiNiO2層狀結構之陰極材料....................................13 2.2.3 LixNi1-yCoyO2層狀結構之陰極材料....................................16 2.2.4 LixNi1-y-zCoyMnzO2層狀結構之陰極材料...............................20 2.2.5 Li[Li1/3-2x/3NixMn2/3-x/3]O2層狀結構之陰極材料.............25 2.3表面修飾陰極材料…………………………………………...…….32 2.3.1 ZrO2表面修飾……………………….………………………...32 2.3.2 Al2O3表面修飾…………………….………………………...35 2.3.3 AlPO4表面修飾…………………….………………………...39 2.3.4 TiO2表面修飾…………………….………………………...43 2.3.5 ZrTiO4表面修飾………………….………………………...45 第三章 實驗方法和儀器設備……………………………………......46 3.1儀器設備……………………………………………………………46 3.2實驗藥品……………………………………………...………….…48 3.3 陰極材料合成…………………………………………………...49 3.3.1改質LiCoO2粉末陰極材料……….………………………..49 3.3.2 Li[Li1/3-2x/3NixMn2/3-x/3]O2陰極材料…………………………49 3.4陰極材料表面修飾方法………………………………………….52 3.4.1 ZrO2表面修飾商品化LiCoO2陰極材料…………………..52 3.4.2 ZrO2表面修飾Li[Li0.2Ni0.2Mn0.6]O2陰極材料……………..54 3.5材料鑑定與分析..…………………………………………………..56 3.5.1 XRD粉末繞射分析……………………….………………..56 3.5.2 ICP-AES感應偶合電漿放射……………….………………..57 3.5.3 SEM表面形態分析……………………………….………..57 3.5.4 TEM 材料粒徑觀測析…………………………….………..57 3.5.5 (DSC)熱穩定性分析…..………………………….………..58 3.6 陰極極片製備……………………………………..……………….59 3.7 鈕扣型電池組裝…………...…………………………………........61 3.8電化學分析測試…………...…………………………………........63 3.8.1鈕扣型電池充放電測試分析……………….………………..63 3.8.2改質電解液之充放電性能測試…………….………………..63 3.8.3交流阻抗電化學特性測試………………….………………..64 3.9臨場同步輻射實驗電池組件製作及組裝……………………….65 3.10陰極材料充電之臨場研究…………………………..…………..68 第四章 結果與討論…………………….……………………...….…...69 4.1以ZrO2表面修飾LiCoO2陰極材料……………………………....69 4.1.1 XRD晶格結構分析 ……………………………………...69 4.1.2感應耦合電漿原子發射光譜材料成分分析………………72 4.1.3掃瞄式電子顯微鏡(SEM)表面型態分析……………………74 4.1.4穿透式電子顯微鏡(TEM)表面型態分析………………….77 4.1.5鈕扣型電池充放電性能測試……………………………….79 4.1.5-1定電流充放電測試…………….……………………….80 4.1.5-2由低至高之充放電速率性能測試……………………..94 4.1.5-3由高至低之充放電速率性能測試……………………..99 4.1.6改質電解液之充放電性能測試..…………..……………..105 4.1.7交流阻抗電化學特性測試……….…………..……………..117 4.1.8 In-situ XRD 充電狀態下結構變化分析…..……………..123 4.1.8-1未表面修飾之LiCoO2充電狀態下結構變化分析….124 4.1.8-2 ZrO2表面修飾之LiCoO2充電狀態下結構變化分析.128 4.1.8-3晶格參數變化分析...………………………………….131 4.1.9陽離子混合效應分析…….…………………..……………..135 4.1.10熱示差掃瞄(DSC)熱穩定性…….…………..……………..139 4.2以ZrO2表面修飾Li[Li1/3-2x/3NixMn2/3-x/3]O2陰極材料….………140 4.2.1 XRD晶格結構分析………………..………………….........140 4.2.2感應耦合電漿原子發射光譜材料成分分析………………143 4.2.3掃瞄式電子顯微鏡表面型態分析..…..………………..…144 4.2.4穿透式電子顯微鏡(TEM)表面型態分析…………..…….147 4.2.5鈕扣型電池充放電性能測試….........................................149 4.2.6 熱示差掃瞄(DSC)熱穩定性分析………………………….166 第五章綜合討論…..…..……………………………………………167 5.1表面修飾LiCoO2增進電池性能之機制探討…….……………....168 第六章 結論……………………………………………………..…....179 第七章 附錄……………………………………………………..…....180 第八章 參考文獻........................................................205

    第八章 參考文獻
    【1】 Yamaki J., Tobishima S., Hayashi K., Saito K., Nemoto Y. and Arakawa M., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , J. Power Sources , 74(2) 219-227 (1998).
    【2】 Delmas, C., Braconnier J. J.and Haginmuller P., A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction, Mater. Res. Bull., 17 117 (1982).
    【3】 Molenda J., Stoklosa A. and Bak T., Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties, Solid State Ionics,36 53 (1989).
    【4】 Passerini, S., Scrosati B.and Gorenstein A., The intercalation of lithium in nickel oxide and its electrochemical properties. J. Electrochem. Soc. ,137 3297(1990).
    【5】 Dahn, J. R., Sacken U. V. and Michal C. A., Structure and electrochemistry of Li(1+x)NiO2 and A new Li2NiO2 phase with the Ni(OH)2 structure,Solid State Ionics,44 87(1990).
    【6】 K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mat. Res. Bull., 15 783 (1980).
    【7】 R. J. Gummow, M. M. Thackeray,E. I. F. Davdid, S. Hull, Mat. Res. Bull., 27 327 (1992).
    【8】 B. Garcia, J. Farcy, J. P. Pereira-Ramos, N. Baffier., Electrochemical Properties of Low Temperature Crystallized LiCoO2 , J. Electrochem. Soc., 144 1179 (1997).
    【9】 L. D. Dyer, B. S. Borie, G. P. Smith, J. Am. Chem. Soc., 78 1499 (1954).
    【10】 J. B. Goodenough, D. G. Wickham, W. J. Croft,Some Ferrimagnetic Properties of the System LixNi1–xO ,J. Appl. Phys., 29 382 (1958).
    【11】 A. Rougier, P. Gravereau, C. Delmas,Optimization of the Composition of the Li1-zNi1+zO2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies,J. Electrochem. Soc., 143 1168 (1996).
    【12】 T. Ohzuku, A. Ueda,M. Nagayama,Electrochemistry and Structural Chemistry of LiNiO2 (R/3m) for 4 Volt Secondary Lithium Cells, J. Electrochem. Soc., 140 1862 (1993).
    【13】 C. Delmas, I. Saadoune, Electrochemical and physical properties of the LixNi1−yCoyO2 phases , Solid State Ionics, 53 370 (1992).
    【14】 C. Delmas, I. Saadoune, A. Rougier, The cycling properties of the LixNi1−yCoyO2 electrode, J. Power Sources, 44 595 (1993).
    【15】 J. Cho, G. Kim, H. S. Lim,Effect of Preparation Methods of LiNi1–xCoxO2 Cathode Materials on Their Chemical Structure and Electrode Performance ,J. Electrochem. Soc., 146 3571 (1999).
    【16】 D. Caurant, N. Baffier, B. Garcia, J. P. Pereira-Ramos, Synthesis by a soft chemistry route and characterization of LiNixCo1−xO2 (0 ≤ x ≤ 1) cathode materials ,Solid State Ionics, 91 45 (1996).
    【17】 R. J. Gummow, M. M. Thackeray, Lithium-cobalt-nickel-oxide cathode materials prepared at 400°C for rechargeable lithium batteries ,Solid State Ionics, 53 681 (1992).
    【18】 R. Stoyanova, E. Zhecheva, L. Zarkova,Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1−yO2 solid solutions, Solid State Ionics, 73 233 (1994).
    【19】 E. Zhecheva, R. Stoyanova, Stabilization of the layered crystal structure of LiNiO2 by Co-substitution, Solid State Ionics, 66 143 (1993).
    【20】 B. Banov, J. Bourilkov, M. Mladenov, Cobalt stabilized layered lithium-nickel oxides, cathodes in lithium rechargeable cells , J. Power Sources, 54 268 (1995).
    【21】 Z. Liu, A. Yu, J. Lee, Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries , J. Power Sources, 81 416 (1999).
    【22】 M. Yoshio, H. Noguchi, J. I. Itoh, M. Okada, T. Mouri, Preparation and properties of LiCoyMnxNi1−x−yO2 as a cathode for lithium ion batteries, J. Power Sources, 90 176 (2000).
    【23】 B. J. Hwang, Y. W. Tsai, C. H. Chen, R. Santhanam, Influence of Mn content on the morphology and electrochemical performance of LiNi1–x–yCoxMnyO2 cathode materials, J. Mater. Chem., 13 1962 (2003).
    【24】 T. Ohzuku, Y. Makimura, Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries ,Chem. Lett., 642 (2001).
    【25】 B. J.Hwang, Y. W. Tsai, D. Carlier, G. Ceder, A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2, Chem. Mater., 15 3676 (2003).
    【26】 Shao-Horn Y., Hackney S. A., Armstrong A. R., Bruce P. G., Gitzendanner R., Johnson C. S. and Thackeray M. M., Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging, J. Electrochem. Soc., 146(7) 2404-2412(1999).
    【27】 Numata K.,Sakaki C.and Yamanaka S., Synthesis and characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3, Solid State Ionics,117 (3-4) 257-263 (1999).
    【28】 Lu, Z. H.; Dahn, J. R., Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies, J. Electrochem. Soc.,149(7) A815-A822 (2002).
    【29】 Lu Z. H.,Beaulieu L. Y., Donaberger R. A., Thomas C. L., Dahn J. R., Synthesis, structure and electrochemical behavior of Li[NixLi(1/3-2x/3) -Mn(2/3-x/3)]O2, J. Electrochem. Soc., 149(6) A778-A791(2002).
    【30】 Lu Z.,MacNeil D.D. and Dahn J.,Layer cathode materials of Li[NixLi(1/3-2x/3) Mn(2/3-x/3)]O2 for lithium-ion batteries ,Electrochem. Slid-State Lett.4 (11) A191-A194 (2001).
    【31】 Richard M.N.,Koetschau I., and Dahn J.R., In Situ X-Ray Diffraction Based on Coin Cell Hardware and Bellcore Plastic Electrode Technology ,J. Electrochem. Soc.,144 554 (1997).
    【32】 Richard M.N.,Fuller E.W., and Dahn J.R., Synthesis and characterization of layer structured solid solutions in the system of LiCoO2–Li2MnO3 ,Solid State Ionics,117 257 (1999).
    【33】 Ohzuku T., Ueda A. and Nagayama M., Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 Volt secondary lithium cells, J. Electrochem. Soc.,140,1862(1993).
    【34】 Young-Sik Hong, Yong Joon Park, Kwang Sun Ryu, Soon Ho Chang and Min Gyu Kim, Synthesis and electrochemical properties of nanocrystalline Li[NixLi1/3-2x/3Mn2/3-x/3]O2 prepared by a simple combustion method, J. Mater. Chem. ,14 1424-1429(2004).
    【35】 Kwon I.,and Song M.Y., Electrochemical properties of LiCoyMn2−yO4 synthesized by the combustion method for lithium secondary battery ,Solid State Ionics,158 103 (2003).
    【36】 Manoharan S.S.,and Patil K.C., Combustion Synthesis of Metal Chromite Powders , Combustion Synthesis of Metal Chromite Powders , J. Am. Ceram. Soc.,75 1012 (1992).
    【37】 Jaephil Cho, Yong Jeong Kim, Tae-Joon Kim,and Byungwoo Park, Angew. Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell, Chem. Int. Ed., 40, 3367 (2001)
    【38】 Zhaohui Chena and J. R. Dahn, Effect of a ZrO2 Coated on the Structure and Electrochemistry of LixCoO2 When Cycled to 4.5 V, Electrochemical and Solid-State Letters, 5(10) A213-A216 (2002)
    【39】 Zhaohui Chen and J. R. Dahn, Studies of LiCoO2 Coated with
    Metal Oxides, Electrochemical and Solid-State Letters, 6 (11) A221-A224 (2003)
    【40】Cho, J., Kim, Y. J. and Parkb, B. , LiCoO2 Cathode Material That
    Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase, J. Electrochem. Soc, 148 (10) A1110-A1115 (2001)
    【41】Joon-Gon Lee,a Byoungsoo Kim,a Jaephil Cho, Young-Woon
    Kim, and Byungwoo Parka, Effect of AlPO4-Nanoparticle Coated
    Concentration on High-Cutoff-Voltage Electrochemical
    Performances in LiCoO2 , Journal of The Electrochemical Society,
    151 (6) A801-A805 (2004)
    【42】Jaephil Cho, Tae-Joon Kim, Jisuk Kim, Mijung Noh, and Byungwoo Parkb, Synthesis, Thermal, and Electrochemical Properties of AlPO4-Coated LiNi0.8Co0.1Mn0.1O2 Cathode Materials for a Li-Ion Cell ,Journal of The Electrochemical Society, 151 (11) A1899-A1904 (2004)
    【43】Hansan Liu, Zhongru Zhang, Zhengliang Gong, Yong Yang, A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coated , Solid State Ionics 166 317–325(2004)
    【44】Lijun Liu,Liquan Chen, Xuejie Huang, Xiao-Qing Yang,
    Won-Sub Yoon, H. S. Lee,b and James McBreenb, Electrochemical and In Situ Synchrotron XRD Studies on Al2O3-Coated LiCoO2 Cathode Material , Journal of The Electrochemical Society, 151 (9) A1344-A1351 (2004)
    【45】Xiao-Qing Yang, X. Sun, and James McBreenb, New phases and phase transitions observed in Li1−xCoO2 during charge: in situ synchrotron X-ray diffraction study, Electrochem Communication, 2 100 (2000)
    【46】林後坤. 過量鋰陰極材料之合成與其電化學分析
    國立台灣科技大學/化學工程系碩士論文 (2005)
    【47】Seungsuk Oh, Joong Kee Lee , Dongim Byun, Won Ii Cho, Byung Won Cho, Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries, Journal of Power Sources 132 (2004) 249–255
    【48】Y.-K. Sun, K.-J. Hong, and Jai Prakashb, The Effect of ZnO Coating on Electrochemical Cycling Behavior of Spinel LiMn2O4 Cathode Materials at Elevated Temperature Journal of The Electrochemical Society, 150 (7) A970-A972 (2003)
    【49】George Ting-Kuo Fey , Cheng-Zhang Lu, Jiun-Da Huang,
    T. Prem Kumar, Yu-Chen Chang, Nanoparticulate coatings for enhanced cyclability of LiCoO2 cathodes, Journal of Power Sources 146 (2005) 65–70

    QR CODE