簡易檢索 / 詳目顯示

研究生: Anton Royanto Ahmad
Anton Royanto Ahmad
論文名稱: COMPREHENSIVE DESIGN OF MULTIPLE AXIS FORCE/MOMENT SENSORS
COMPREHENSIVE DESIGN OF MULTIPLE AXIS FORCE/MOMENT SENSORS
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 林其禹
Chyi-Yeu Lin
林柏廷
Po Ting Lin
李維楨
Wei-Chen Lee
郭重顯
Chung-Hsien Kuo
林沛群
Pei-Chun Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 101
外文關鍵詞: Three-axis force sensor, six-axis force sensor, integrated data acquisition board
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Industrial automation heavily relies on force sensors. Different applications require different kinds of force sensors in terms of their specification and the number of the axis being sensed. A comprehensive method, from structure to the internal data acquisition board that could build any customized force sensor, is being presented in this thesis. Optimization process to get the most sensitive force sensor with a wide range of specifications. Strain gauges are configured with the revolutionary arrangement to get maximum accuracy and minimum interference error. An integrated data acquisition board essential to condition the signals also present excellent performance. The three-axis and six-axis force sensors are tested and show significant improvement. The results show a measurement error of 0.78%, and the most significant interference error is 1.61% for the three-axis. The six-axis force sensor shows a maximum measurement error of 1.46% and a maximum interference error of 0.59%.

    DOCTORAL THESIS RECOMMENDATION FORM ii QUALIFICATION FORM iii ACKNOWLEDGMENTS iv ABSTRACT vi TABLE OF CONTENT vii LIST OF FIGURE ix LIST OF TABLE xii 1. CHAPTER 1 INTRODUCTION 1 1.1. State of the Art 1 1.2. Research Objective 4 1.3. Research Scope Limitation 4 1.4. Novelties 5 1.5. Structure of Thesis 5 2. CHAPTER 2 STRUCTURAL DESIGN 6 2.1. Material 6 2.2. Structural Design of 6-Axis Force Sensor 7 2.2.1. Mathematical Modelling 9 2.2.2. Strain gauge allocation 16 2.2.3. Design Procedure 19 2.3. Structural Design of 3-Axis Force Sensor 21 3. CHAPTER 3 STRAIN GAUGE ARRANGEMENT ANALYSIS 26 3.1. Strain Gauge Arrangement on 6-Axis 26 3.1.1. Strain Analysis 29 3.2. Strain Gauge Arrangement on 3-Axis 34 3.2.1. Strain Analysis 35 4. CHAPTER 4 DATA ACQUISITION BOARD 42 4.1. External vs. Integrated DAQ 42 4.2. DAQ Board Design for 3-Axis 43 4.2.1. Schematic 44 4.2.2. PCB Layout 48 4.3. DAQ Board Design for 3-Axis 51 4.3.1. PCB Layout 52 5. CHAPTER 5 CALIBRATION AND TESTING 55 5.1. Calibration Jig Validation 55 5.2. Calibration Method for 6-Axis 57 5.3. Results of 6-axis force sensor 65 5.3.1. In Calibration Jig 65 5.3.2. In Robot Arm 67 5.4. Calibration Method for 3-Axis 72 5.5. Results of 3-axis force sensor 75 5.6. Accelerometer Calibration 78 5.7. Tool Weight Deduction Concept 80 6. CHAPTER 5 CONCLUSIONS 82 REFERENCES 84

    [1] J. O. Templeman, B. B. Sheil, and T. Sun, “Multi-axis force sensors: A state-of-the-art review,” Sensors Actuators, A Phys., vol. 304, p. 111772, 2020, doi: 10.1016/j.sna.2019.111772.
    [2] Q. Liang et al., “Multi-Component FBG-Based Force Sensing Systems by Comparison with Other Sensing Technologies: A Review,” IEEE Sensors Journal, vol. 18, no. 18. Institute of Electrical and Electronics Engineers Inc., pp. 7345–7357, Sep. 15, 2018, doi: 10.1109/JSEN.2018.2861014.
    [3] A. R. Ahmad, T. Wynn, and C. Y. Lin, “A comprehensive design of six‐axis force/moment sensor,” Sensors, vol. 21, no. 13, 2021, doi: 10.3390/s21134498.
    [4] M. T. Ha and C. G. Kang, “Elastic structure for a multi-axis forcetorque sensor,” J. Mech. Sci. Technol., vol. 34, no. 1, pp. 23–31, Jan. 2020, doi: 10.1007/s12206-019-1203-3.
    [5] Y. B. Kim et al., “6-Axis Force/Torque Sensor with a Novel Autonomous Weight Compensating Capability for Robotic Applications,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 6686–6693, 2020, doi: 10.1109/LRA.2020.3015450.
    [6] U. Kim, D. H. Lee, Y. B. Kim, D. Y. Seok, and H. R. Choi, “A novel six-axis force/torque sensor for robotic applications,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 3, pp. 1381–1391, 2017, doi: 10.1109/TMECH.2016.2640194.
    [7] G. A. Kebede, A. R. Ahmad, S.-C. Lee, and C.-Y. Lin, “Decoupled Six-Axis Force–Moment Sensor with a Novel Strain Gauge Arrangement and Error Reduction Techniques,” Sensors, vol. 19, no. 13, p. 3012, 2019, doi: doi:10.3390/s19133012.
    [8] C. Y. Lin, A. R. Ahmad, and G. A. Kebede, “Novel mechanically fully decoupled six-axis force-moment sensor,” Sensors (Switzerland), vol. 20, no. 2, p. 395, 2020, doi: 10.3390/s20020395.
    [9] M. Kadkhodayan and M. Maarefdoust, “Elastic/plastic buckling of isotropic thin plates subjected to uniform and linearly varying in-plane loading using incremental and deformation theories,” Aerosp. Sci. Technol., vol. 32, no. 1, pp. 66–83, 2014, doi: 10.1016/j.ast.2013.12.003.
    [10] Y. Wang, G. Zuo, X. Chen, and L. Liu, “Strain Analysis of Six-Axis Force/Torque Sensors Based on Analytical Method,” IEEE Sens. J., vol. 17, no. 14, pp. 4394–4404, 2017, doi: 10.1109/JSEN.2017.2703160.
    [11] J. Ma and A. Song, “Fast estimation of strains for cross-beams six-axis force/torque sensors by mechanical modeling,” Sensors (Switzerland), vol. 13, no. 5, pp. 6669–6686, 2013, doi: 10.3390/s130506669.
    [12] M. Kang, S. Lee, and J. Kim, “Sensors and Actuators A : Physical Shape optimization of a mechanically decoupled six-axis force / torque sensor,” Sensors Actuators A. Phys., vol. 209, pp. 41–51, 2014, doi: 10.1016/j.sna.2014.01.001.
    [13] R. Bekhti, V. Duchaine, and P. Cardou, “Miniature capacitive three-axis force sensor,” IEEE Int. Conf. Intell. Robot. Syst., no. Iros, pp. 3939–3946, 2014, doi: 10.1109/IROS.2014.6943116.
    [14] M. Fontana, S. Marcheschi, F. Salsedo, and M. Bergamasco, “A three-axis force sensor for dual finger haptic interfaces,” Sensors (Switzerland), vol. 12, no. 10, pp. 13598–13616, 2012, doi: 10.3390/s121013598.
    [15] R. Richardson, M. Brown, B. Bhakta, and M. C. Levesley, “Design and control of a three degree of freedom pneumatic physiotherapy robot,” Robotica, vol. 21, no. 6, pp. 589–604, 2003, doi: 10.1017/S0263574703005320.
    [16] P. Valdastri et al., “Integration of a miniaturised triaxial force sensor in a minimally invasive surgical tool,” IEEE Trans. Biomed. Eng., vol. 53, no. 11, pp. 2397–2400, 2006, doi: 10.1109/TBME.2006.883618.
    [17] G. Kim, “Development of a three-axis gripper force sensor and the intelligent gripper using it,” vol. 137, pp. 213–222, 2007, doi: 10.1016/j.sna.2007.03.002.
    [18] A. Fernandez Fernandez et al., “Multi-component force sensor based on multiplexed fibre Bragg grating strain sensors,” Meas. Sci. Technol., vol. 12, no. 7, pp. 810–813, 2001, doi: 10.1088/0957-0233/12/7/310.
    [19] A. Kazerooni and H. Akbari, “Proposing an index for qualitative comparison of six-axis force/torque sensors and optimization of Maltese cross geometry to reduce cross-coupling error,” Modares Mech. Eng., vol. 17, no. 10, pp. 153–164, 2017, [Online]. Available: https://www.researchgate.net/publication/320384002_Proposing_an_index_for_qualitative_comparison_of_six-axis_forcetorque_sensors_and_optimization_of_Maltese_cross_geometry_to_reduce_cross-coupling_error%0Ahttp://journals.modares.ac.ir/article-15-1836-en.h.
    [20] L. C. U and K. Chen, “Shape optimal design and force sensitivity evaluation of six-axis force sensors,” vol. 63, pp. 105–112, 1997.
    [21] L. C. U and C. Yin, “The six-component force sensor for measuring the loading of the feet in locomotion,” 1999.
    [22] B. Lizon, C. Hall, R. Andrews, and J. Wuerker, “Fundamentals of Precision ADC Noise Analysis,” p. 65, 2020.
    [23] L. Zumbahlen, “Staying Well Grounded,” Analog Dialogue, pp. 1–9, 2012, [Online]. Available: http://www.analog.com/library/analogdialogue/archives/46-06/staying_well_grounded.html.
    [24] C. Yuan et al., “Development and evaluation of a compact 6-axis force/moment sensor with a serial structure for the humanoid robot foot,” Meas. J. Int. Meas. Confed., vol. 70, pp. 110–122, 2015, doi: 10.1016/j.measurement.2015.03.027.

    無法下載圖示 全文公開日期 2027/01/21 (校內網路)
    全文公開日期 2027/01/21 (校外網路)
    全文公開日期 2027/01/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE