簡易檢索 / 詳目顯示

研究生: XANNO KHARIS SIGALINGGING
XANNO KHARIS SIGALINGGING
論文名稱: 深度學習技術研究 可可豆影像的分類: 情境資訊和池化層的影響
Study on the Deep Learning Techniques on the Classification of Cocoa Bean Images: Effects of Contextual Information and Pooling Layers
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 方文賢
Wen-Hsien Fang
陳郁堂
Yie-Tarng Chen
陳俊良
Jiann-Liang Chen
阮聖彰
Shanq-Jang Ruan
陳永耀
Yung-Yao Chen
魏宏宇
Hung-Yu Wei
許騰尹
Terng-Yin Hsu
呂政修
Jenq-Shiou Leu
周承復
Cheng-Fu Chou
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 46
中文關鍵詞: 機器學習分類農業
外文關鍵詞: Machine learning, Classification, Agriculture
相關次數: 點閱:58下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,深度學習已成為智慧農業和精準農業的變革性補充,對已開發國家產生了重大影響。然而,在發展中國家,特別是小農中,這些技術的廣泛採用受到限制。這項研究的重點是在智慧農業和精準農業的背景下增強影像分類,特別是利用新型深度學習架構的基本屬性。農產品通常表現出獨特的表面紋理,我們的目標是利用這一點。我們的方法名為上下文優化殘差網路(CORNet),採用深度學習技術,透過合併特定層級的資訊並利用上下文選擇機制來增強功能。透過利用作物圖像中存在的上下文相關性,我們的方法證明了上下文選擇機制的有效性。此外,我們調整模型中的特徵提取參數和池化層。我們使用源自印尼真實可可豆產業的可可豆資料集以及現成的開源資料集來評估我們的模型。


In the recent years, deep learning has emerged as a transformative addition to smart farming and precision agriculture, significantly impacting developed nations. However, in developing countries, particularly among smallholder farmers, the widespread adoption of these technologies has been limited. This study focuses on enhancing image classification in the context of smart farming and precision agriculture, especially in exploiting fundamental properties in novel deep learning architectures. Agricultural products often exhibit distinct surface textures, which we aim to leverage. Our approach, named Context Optimized Residual Network (CORNet), employs deep learning techniques to enhance features by incorporating level-specific information and utilizing a context selection mechanism. By capitalizing on the contextual correlations present in crop images, our method demonstrates the effectiveness of the context selection mechanism. Further, we adjust feature extraction parameters and pooling layers in our model. We evaluated our model using the cocoa bean dataset derived from the real cocoa bean industry in Indonesia, as well as readily available open source datasets.

ABSTRACT i ACKNOWLEDGEMENTS ii Table of Contents iii LIST OF FIGURES vi LIST OF TABLES vii LIST OF SYMBOLS viii CHAPTER 1 INTRODUCTION 1 1.1. Research Background 1 1.2. Research Objective 2 1.3. Dissertation Organization 3 CHAPTER 2 SMART FARMING IN INDONESIA 4 2.1 Why smart farming? 4 2.2 Current Challenges 6 2.3 Smart Farming for Cocoa Bean 8 2.4 Possible solution in the form of smart farming 10 CHAPTER 3 NEURAL NETWORK MODEL FOR COCOA BEAN CLASSIFICATION 12 3.1 Methods 12 3.1.1 Overview 14 3.1.2 Attention Mechanism 15 3.1.3 Context Adaptation Mechanism 17 3.1.4 Context Selection Mechanism 18 3.2 Assessment 19 3.2.1 Implementation Details 19 3.2.2 Dataset 19 3.3 Results and Discussions 21 3.3.1 Results 21 3.3.2 Discussion 23 CHAPTER 4 STUDY OF IMPROVEMENTS FOR NEURAL NETWORK MODEL OF COCOA BEAN CLASSIFICATION 28 4.1 Methods 28 4.1.2 Feature Richness 28 4.1.3 Pooling Layers 31 4.2 Assessment 33 4.2.1 Implementation Details 33 4.2.2 Dataset 33 4.3 Results and Discussion 34 4.3.1 Results 34 4.3.2 Discussion 36 CHAPTER 5 SUMMARY AND FUTURE WORK 40 5.1 Conclusions 40 5.2 Future Works 41 References 43

[1] M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R. Kaliaperumal, “Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture,” Agriculture, vol. 12, no. 10, p. 1745, Oct. 2022, doi: 10.3390/agriculture12101745. [Online]. Available: http://dx.doi.org/10.3390/agriculture12101745
[2] R. Rayhana, G. Xiao and Z. Liu, "Internet of Things Empowered Smart Greenhouse Farming," in IEEE Journal of Radio Frequency Identification, vol. 4, no. 3, pp. 195-211, Sept. 2020, doi: 10.1109/JRFID.2020.2984391.
[3] N. G. Rezk, E. ED. Hemdan, AF. Attia, A. El-Sayed, M. A. El-Rashidy, “An efficient IoT based smart farming system using machine learning algorithms.” Multimed Tools Appl 80, 773–797, 2021, https://doi.org/10.1007/s11042-020-09740-6
[4] V. Saiz-Rubio, and F. Rovira-Más, "From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management" Agronomy 10, no. 2: 207, 2020, https://doi.org/10.3390/agronomy10020207.
[5] V. Tenrisanna and K. Kasim, “Livestock farming income analysis of farm households in Indonesia.” In the 3rd International Conference of Animal Science and Technology. IOP Conf. Ser.: Earth Environ. Sci. 3-4 November 2020, Makassar, Indonesia, doi:10.1088/1755-1315/788/1/012218
[6] H. Toiba, T. W. Nugroho, D. Retnoningsih, and M. S. Rahman, “Food system transformation and its impact on smallholder farmers’ income and food security in Indonesia.” Cogent Economics & Finance, 8:1, 2020, doi: 10.1080/23322039.2020.1854412.
[7] H. Azadi, P. Ho, and L. Hasfiati. “Agricultural Land Conversion Drivers: A Comparison between Less Developed, Developing and Developed Countries.” Land Degradation & Development 22, no. 6 (2010): 596–604. https://doi.org/10.1002/ldr.1037.
[8] M. Rondhi, P. A. Pratiwi, V. T. Handini, A. F. Sunartomo, and S. A. Budiman, "Agricultural Land Conversion, Land Economic Value, and Sustainable Agriculture: A Case Study in East Java, Indonesia" Land 7, no. 4: 148, 2018, https://doi.org/10.3390/land7040148
[9] K. M. A. Rahman, and D. Zhang, "Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability" Sustainability, 10, no. 3: 759, 2018, https://doi.org/10.3390/su10030759
[10] E. Soetarto, D. Nurdinawati, R. Sita, M. Sihaloho, and T. Budiarto, "Agriculture and the regeneration problem: Rural youth, employment, and the future of farming." In Rural Socio-Economic Transformation: Agrarian, Ecology, Communication and Community Development Perspectives, pp. 35-44. CRC Press, 2019.
[11] Badan Pusat Statistik. “Jumlah Pendapatan Setelah Pajak Menurut Golongan Rumah Tangga.” Badan Pusat Statistik. Accessed June 10, 2022. https://www.bps.go.id/indikator/indikator/view_data/0000/data/681/website_104/1.
[12] Pertanian, Kementrian. “Youth Entrepreneur and Employment Support Services (YESS).” Kementerian Pertanian. Accessed July 6, 2022. https://yesskementan.org/profile.
[13] M. I. H. bin Ismail and N. M. Thamrin, "IoT implementation for indoor vertical farming watering system," 2017 International Conference on Electrical, Electronics and System Engineering (ICEESE), 2017, pp. 89-94, doi: 10.1109/ICEESE.2017.8298388.
[14] S. W. Prakosa, M. Faisal, Y. Adhitya, J.-S. Leu, M. Koppen, and C. Avian, “Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area,” Electronics, Vol. 10, Issue 1, pp. 1–12, 77, Jan. 2021
[15] Y. Adhitya, S. W. Prakosa, M. Koppen and J.-S. Leu, “Feature Extraction for Cocoa Bean Digital Image Classification Prediction for Smart Farming Application,” Agronomy, Vol. 10, Issue 11, pp. 1–16, 1642. Oct. 2020
[16] W. -L. Chen et al., "AgriTalk: IoT for Precision Soil Farming of Turmeric Cultivation," in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5209-5223, June 2019, doi: 10.1109/JIOT.2019.2899128.
[17] M. I. Alipio, A. E. M. D. Cruz, J. D. A. Doria, and R. S. Fruto, “A smart hydroponics farming system using exact inference in bayesian network,” in 2017 IEEE 6th Global Conference on Consumer Electronics, Oct 2017.
[18] G. Hristov, D. Kinaneva, G. Georgiev, P. Zahariev and P. Kyuchukov, "An overview of the use of Unmanned Aerial Vehicles for Precision Agriculture," 2020 International Conference on Biomedical Innovations and Applications (BIA), 2020, pp. 137-140, doi: 10.1109/BIA50171.2020.9244519.
[19] R. G. de Luna, E. P. Dadios and A. A. Bandala, "Automated Image Capturing System for Deep Learning-based Tomato Plant Leaf Disease Detection and Recognition," TENCON 2018 - 2018 IEEE Region 10 Conference, 2018, pp. 1414-1419, doi: 10.1109/TENCON.2018.8650088.
[20] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," arXiv:1512.03385 [cs.CV], 2015. [Online]. Available: https://arxiv.org/abs/1512.03385t
[21] S. W. Prakosa, J. S. Leu, H. Y. Hsieh, C. Avian, C. H. Bai, and S. Vítek, "Implementing a Compression Technique on the Progressive Contextual Excitation Network for Smart Farming Applications," Sensors, vol. 22, no. 24, p. 9717, 2022. [Online]. Available: https://doi.org/10.3390/s22249717
[22] M. H. Saleem, J. Potgieter, and K. M. Arif, "Plant Disease Detection and Classification by Deep Learning" Plants 8, no. 11: 468, 2019 https://doi.org/10.3390/plants8110468
[23] A. Jihen, B. Bouaziz, A. A. Algergawy, “Deep Learning-Based Approach for Banana Leaf Diseases Classification.” In Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband, Gesellschaft für Informatik e.V., Bonn, Germany, 2017
[24] A. Sirohi, A. Malik, “A hybrid model for the classification of sunflower diseases using deep learning.” In Proceedings of the 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), London, UK, 28–30 April 2021.
[25] N. Kussul, M. Lavreniuk, S. Skakun and A. Shelestov, "Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data," in IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 778-782, May 2017, doi: 10.1109/LGRS.2017.2681128.
[26] D. Mohapatra, B. Choudhury, B. Sabat, “An Automated System for Fruit Gradation and Aberration Localisation using Deep Learning.” In Proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021.
[27] A. Milioto, P. Lottes, C. Stachniss, “Real-time blob-wise sugar beets vs weeds classification for monitoring fields using convolutional neural networks.” In Proceedings of the International Conference on Unmanned Aerial Vehicles in Geomatics, Bonn, Germany, 6–7 April 2017.
[28] R. A. Priyadharshini, S. Arivazhagan, M. Arun, A. Mirnalini, “Maize leaf disease classification using deep convolutional neural networks.” Neural Comput. Appl. 31, 8887–8895, 2019, https://doi.org/10.1007/s00521-019-04228-3
[29] A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in corn leaf.” Comput. Electron. Agric. 175, 105456, 2020, https://doi.org/10.1016/j.compag.2020.105456
[30] H. Yu, J. Liu, C. Chen, A. A. Heidari, Q. Zhang, H. Chen, M. Mafarja, H. Turabieh, “Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning.” IEEE Access 9, 143824–143835, 2021, https://doi.org/10.1109/- ACCESS.2021.3120379
[31] A. D. Andrushia, A. T. Patricia, “Artificial bee colony optimization (ABC) for grape leaves disease detection.” Evol. Syst. 11, 105–117, 2020, https://doi.org/10.1007/s12530-019-09289-2
[32] A. Adeel, M. A. Khan, T. Akram, A. Sharif, M. Yasmin, T. Saba, K. Javed, Entropy controlled deep features selection framework for grape leaf diseases recognition.” Expert Syst, 2020, https://doi.org/10.1111/exsy.12569
[33] B. Liu, Y. Zhang, D.-J. He, Y. Li, “Identification of apple leaf diseases based on deep convolutional neural networks.” Symmetry (Basel). 10, 2018, https://doi.org/10.3390/sym10010011
[34] Y. Zhong, M. Zhao, “Research on deep learning in apple leaf disease recognition.” Comput. Electron. Agric. 168, 105146, 2020, https://doi.org/10.1016/-j.compag.2019.105146
[35] N. G. Rezk, E. E. D. Hemdan, A. F. Attia, A. E. Sayed, and M. A. E. Rashidy, “An efficient IoT based smart farming system using machine learning algorithms.” Multimed Tools Appl 80, 773–797. 2021. https://doi.org/10.1007/s11042-020-09740-6.
[36] P. Joshi, D. Das, V. Udutalapally, M. K. Pradhan and S. Misra, "RiceBioS: Identification of Biotic Stress in Rice Crops Using Edge-as-a-Service," in IEEE Sensors Journal, vol. 22, no. 5, pp. 4616-4624, 1 March1, 2022, doi: 10.1109/JSEN.2022.3143950
[37] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.
[38] Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2018). "Densely Connected Convolutional Networks." [Online]. Available: https://arxiv.org/abs/1608.06993.
[39] S. W. Prakosa, J. S. Leu, and Z. H. Chen, “Improving the accuracy of pruned network using knowledge distillation,” Pattern Analysis and Applications, vol. 24, no. 2, pp.819–830, May 2021, doi: 10.1007/s10044-020-00940-2.  

[40] Z. Du, R. Zhang, M. Chang, X. Zhang, S. Liu, T. Chen, and Y. Chen, "Distilling Object Detectors with Feature Richness," arXiv:2111.00674 [cs.CV], Nov. 2021.
[41] B. Sebastian V, A. Unnikrishnan, and K. Balakrishnan, "Gray Level Co-Occurrence Matrices: Generalisation and Some New Features," arXiv:1205.4831 [cs.CV], May 2012.
[42] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel, "Handwritten Digit Recognition with a Back-Propagation Network," Advances in Neural Information Processing Systems, D. Touretzky, Ed., vol. 2. Morgan-Kaufmann, 1989.
[43] Y. Meir, Y. Tzach, R. D. Gross, O. Tevet, R. Vardi, and I. Kanter, "Enhancing the accuracies by performing pooling decisions adjacent to the output layer," Scientific Reports, vol. 13, no. 1, p. 13385, Aug. 2023. DOI: 10.1038/s41598-023-40566-y

QR CODE