簡易檢索 / 詳目顯示

研究生: Darwin Santoso
Darwin Santoso
論文名稱: 人機協作組裝線之深度學習智能作業指引模式
A Smart Advice Model by Deep Learning for Motion Detection in Human-robot coexisted assembly line
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 蔣明晃
蔣明晃
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 107
中文關鍵詞: 決策樹分類器人機協作動作識別物件檢測作業指引建議系統
外文關鍵詞: decision tree classifier, human-machine collaboration, motion recognition, object detection, operations advice system
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 作業指引可以幫助資淺工作者遵循正確的作業程序,確保人機共存組裝線之作
    業協調性。本研究針對 GPU 組裝線提出一種透過深度學習的智慧作業指引模型,
    使用卷積神經網絡 YOLOv3 的物件檢測機制和決策樹分類器 CART 的動作識別機
    制,作為模型核心。在此人機協作組裝線上,透過三個獨立的攝影機監控所有
    物件(如:風扇、主機板、GPU、機器人、工作者頭部、工作者身體、螺絲鎖附
    機、螺絲起子等)。動作檢測是由三個攝影機輸入目標物件的坐標和速度,並
    執行三個平行且獨立的決策樹分類器來完成,最終輸出作業建議。本研究透過
    GPU 組裝過程完成模型的評估,F1-score 達到 0.96。此智慧模型有助於裝配過
    程中,向資淺工作者提供即時有效的工作指導。


    Operations advice system can help junior workers to follow standard operations
    procedure, which is critical to a human-robot coexisted assembly line to guarantee
    harmonious tasks. In this study, a smart operator advice model by deep-learning is
    proposed for a GPU assembly line. Two mechanisms are built as the core of the model,
    which is an object detection mechanism using convolutional neural network YOLOv3
    and a motion recognition mechanism using decision tree classifier CART. The object
    detection is conducted by 3 parallel and independent cameras monitoring all the objects
    (e.g., fan, motherboard, GPU, robot, head, body, screwing machine, screwdriver) in the
    assembly line. The motion detection is done by three parallel and independent decision
    tree classifiers by the three cameras where the input is the coordinates and speed of
    objects. The final output isthe task advice given by the proposed operator advice model.
    The evaluation of the model is done through a case study of a GPU final assembly
    process. F1-score shows a value of 0.96 by the model. The smart model facilitates
    informative instruction to the junior operator during the assembly process in real time.

    Abstract..........................................................................................................................i 摘要 ………………………………………………………………………………….ii Acknowledgement...................................................................................................... iii List of Figures.............................................................................................................vii List of Tables............................................................................................................ viii Chapter 1. Introduction .............................................................................................1 Chapter 2. Literature review ......................................................................................3 2.1 Motion recognition and object detection ........................................................3 2.2 Object and speed detection ..............................................................................3 2.3 Decision tree classifier ......................................................................................5 2.4 Summary............................................................................................................6 Chapter 3. Method......................................................................................................7 3.1 Research framework.........................................................................................7 3.2 Object detection mechanism of the proposed SOAM model ......................10 3.3 Speed detection from object detection result................................................12 3.4 Motion recognition by decision tree classifier ..............................................14 3.5 The proposed advice system for operator.....................................................16 Chapter 4. Experiment results and discussions ....................................................18 4.1 Experimental setup .........................................................................................18 4.2 Evaluation of object detection mechanism ...................................................23v 4.3 Construction of motion recognition classifier ..............................................28 4.4 SOAM evaluation............................................................................................33 Chapter 5. Conclusions............................................................................................35 References...................................................................................................................37 Appendix 1. Camera 1 model....................................................................................40 (a) Decision tree of Human motions....................................................................40 (b) Decision tree of Robot motions......................................................................47 Appendix 2. Camera 2 model....................................................................................56 (a) Decision tree of Human motions....................................................................56 (b) Decision tree of Robot motions...........................................................................63 Appendix 3. Camera 3 model....................................................................................71 (a) Decision tree of Human motions....................................................................71 (b) Decision tree of Robot motions......................................................................82 Appendix 4. The features used in Camera 1 model ................................................90 (a) Human motions ....................................................................................................90 (b) Robot motions.......................................................................................................91 Appendix 5. The features used in Camera 2 model ................................................92 (a) Human motions ....................................................................................................92 (c) Robot motions..................................................................................................94 Appendix 6 The features used in Camera 3 model .................................................95 (a) Human motions ....................................................................................................95vi (b) Robot motions.......................................................................................................96

    Adnan, M. A., Sulaiman, N., Zainuddin, N. I., & Besar, T. B. H. T. (2013). Vehicle
    speed measurement technique using various speed detection instrumentation.
    BEIAC 2013 - 2013 IEEE Business Engineering and Industrial Applications
    Colloquium, 668±672. https://doi.org/10.1109/BEIAC.2013.6560214
    Ajit, A., Acharya, K., & Samanta, A. (2020). A Review of Convolutional Neural
    Networks. International Conference on Emerging Trends in Information
    Technology and Engineering, Ic-ETITE 2020, 1±5. https://doi.org/10.1109/icETITE47903.2020.049
    Babaee, M., Dinh, D. T., & Rigoll, G. (2018). A deep convolutional neural network for
    video sequence background subtraction. Pattern Recognition, 76, 635±649.
    https://doi.org/10.1016/j.patcog.2017.09.040
    Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). Realtime multi-person 2D pose
    estimation using part affinity fields. Proceedings - 30th IEEE Conference on
    Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 1302±1310.
    https://doi.org/10.1109/CVPR.2017.143
    Chen, C., Liu, M.-Y., Tuzel, O., & Xiao, J. (2017). R-CNN for Small Object Detection.
    In S.-H. Lai, V. Lepetit, K. Nishino, & Y. Sato (Eds.), Computer Vision -- ACCV
    2016 (pp. 214±230). Springer International Publishing.
    Cristani, M., Raghavendra, R., Del Bue, A., & Murino, V. (2013). Human behavior
    analysis in video surveillance: A Social Signal Processing perspective.
    Neurocomputing, 100, 86±97. https://doi.org/10.1016/j.neucom.2011.12.038
    Dey, A. (2016). Machine Learning Algorithms: A Review. International Journal of
    Computer Science and Information Technologies, 7(3), 1174±1179.
    www.ijcsit.com
    Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE International Conference
    on Computer Vision, 2015 Inter, 1440±1448.
    https://doi.org/10.1109/ICCV.2015.169
    Guo, K., Ishwar, P., & Konrad, J. (2013). Action recognition from video using feature
    covariance matrices. IEEE Transactions on Image Processing, 22(6), 2479±2494.
    https://doi.org/10.1109/TIP.2013.2252622
    Hinrichsen, D., Riediger, D., & Unrau, A. (2016). Assistance systems in manual
    assembly. Production Engineering and Management. 6th International 38
    Conference, December, 3±14.
    https://www.researchgate.net/publication/311535944_Assistance_Systems_in_M
    anual_Assembly
    Hinrichsen, S., & Bendzioch, S. (2019). How Digital Assistance Systems Improve
    Work Productivity in Assembly. In International Conference on Applied Human
    Factors and Ergonomics (pp. 332±342). Springer. https://doi.org/10.1007/978-3-
    319-94334-3_33
    Idrees, H., Zamir, A. R., Jiang, Y. G., Gorban, A., Laptev, I., Sukthankar, R., & Shah,
    0  7KH7+8026FKDOOHQJHRQDFWLRQUHFRJQLWLRQIRUYLGHRV³LQWKHZLOG´
    Computer Vision and Image Understanding, 155, 1±23.
    https://doi.org/10.1016/j.cviu.2016.10.018
    Janidarmian, M., Fekr, A. R., Radecka, K., & Zilic, Z. (2017). A comprehensive
    analysis on wearable acceleration sensors in human activity recognition. Sensors
    (Switzerland), 17(3). https://doi.org/10.3390/s17030529
    Jianping, W., Zhaobin, L., Jinxiang, L., Caidong, G., Maoxin, S., & Fangyong, T.
    (2009). An algorithm for automatic vehicle speed detection using video camera.
    Proceedings of 2009 4th International Conference on Computer Science and
    Education, ICCSE 2009, 193±196. https://doi.org/10.1109/ICCSE.2009.5228496
    Kamate, S., & Yilmazer, N. (2015). Application of Object Detection and Tracking
    Techniques for Unmanned Aerial Vehicles. Procedia Computer Science, 61, 436±
    441. https://doi.org/10.1016/j.procs.2015.09.183
    .UDZF]\N % :RĨQLDN 0 6FKDHIHU G. (2014). Cost-sensitive decision tree
    ensembles for effective imbalanced classification. Applied Soft Computing
    Journal, 14(PART C), 554±562. https://doi.org/10.1016/j.asoc.2013.08.014
    Loh, W. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews:
    Data Mining and Knowledge Discovery, 1.
    Poppe, R. (2010). A survey on vision-based human action recognition. Image and
    Vision Computing, 28(6), 976±990. https://doi.org/10.1016/j.imavis.2009.11.014
    Qi, S., Wu, X., Chen, W. H., Liu, J., Zhang, J., & Wang, J. (2020). sEMG-based
    recognition of composite motion with convolutional neural network. Sensors and
    Actuators, A: Physical, 311, 112046. https://doi.org/10.1016/j.sna.2020.112046
    Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:
    Unified, real-time object detection. Proceedings of the IEEE Computer Society 39
    Conference on Computer Vision and Pattern Recognition, 2016-Decem, 779±788.
    https://doi.org/10.1109/CVPR.2016.91
    Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. Proceedings -
    30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
    2017-Janua, 6517±6525. https://doi.org/10.1109/CVPR.2017.690
    Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. ArXiv.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
    A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large
    Scale Visual Recognition Challenge. International Journal of Computer Vision,
    115(3), 211±252. https://doi.org/10.1007/s11263-015-0816-y
    Shinde, S., Kothari, A., & Gupta, V. (2018). YOLO based Human Action Recognition
    and Localization. Procedia Computer Science, 133(2018), 831±838.
    https://doi.org/10.1016/j.procs.2018.07.112
    Vinciarelli, A., Esposito, A., André, E., Bonin, F., Chetouani, M., Cohn, J. F., Cristani,
    M., Fuhrmann, F., Gilmartin, E., Hammal, Z., Heylen, D., Kaiser, R.,
    Koutsombogera, M., Potamianos, A., Renals, S., Riccardi, G., & Salah, A. A.
    (2015). Open Challenges in Modelling, Analysis and Synthesis of Human
    Behaviour in Human±Human and Human±Machine Interactions. Cognitive
    Computation, 7(4), 397±413. https://doi.org/10.1007/s12559-015-9326-z
    Wang, D., Khosla, A., Gargeya, R., Irshad, H., & Beck, A. H. (2016). Deep Learning
    for Identifying Metastatic Breast Cancer. 1±6. http://arxiv.org/abs/1606.05718
    Yao, G., Lei, T., & Zhong, J. (2019). A review of Convolutional-Neural-Network-based
    action recognition. Pattern Recognition Letters, 118, 14±22.
    https://doi.org/10.1016/j.patrec.2018.05.018
    Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2018). Object detection with deep learning:
    A review. ArXiv, 30(11), 3212±3232

    無法下載圖示 全文公開日期 2024/06/21 (校內網路)
    全文公開日期 2024/06/21 (校外網路)
    全文公開日期 2024/06/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE