簡易檢索 / 詳目顯示

研究生: 游智傑
Chih-Chieh Yu
論文名稱: 透明電極與聚偏二氟乙烯添加鋯鈦酸鉛奈米陶瓷於可撓性元件之研究
Electric properties of transparent flexible electronics using TCO electrode and PZT nano powder modified PVDF films
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 潘漢昌
Han-Chang Pan
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 薄膜鋯鈦酸鉛聚偏二氟乙烯鐵電
外文關鍵詞: thin film, PZT, PVDF, ferroelectric
相關次數: 點閱:204下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年可撓式以及透明之感測元件應用越來越廣,因此,本研究以透明導電薄膜AZO,搭配PVDF鐵電高分子披覆之PET可撓式基板,製作可撓式透明感測元件,並研究其鐵電、壓電、介電及可見光穿透性。
本研究利用雙靶材共濺鍍系統,成功鍍製AZO薄膜,並於研究中發現AZO薄膜中,Al3+離子之濃度為2 wt%時,可得電阻率最低之薄膜,本文並研究基板溫度及工作壓力對薄膜之結晶性與表面微觀結構之影響,當基板溫度達500 ℃時,因濺鍍出之物種帶有較高能量,有利於雜質佔據晶格位置,已貢獻更多電荷載子,因此電阻率可達1×10-3 Ω-cm,且工作壓力2×10-3 Torr時,因氣体平均自由路徑較長,降低物種與氣體分子之碰撞機率,使物種帶有更大動能並撞擊薄膜表面,將不致密之顆粒撞擊脫付,結晶度提升使室溫下鍍製之AZO薄膜,電阻率為5×10-3Ω-cm。
因高分子之分子鏈於薄膜中糾結,造成偶極矩轉向不易而降低鐵電、壓電及介電等特性,因此本文利用二氧化碳雷射低溫退火處理,將PVDF薄膜表面瞬間熔融再固化結晶,以提高PVDF之結晶性,量測結果顯示,隨雷射退火能量密度提高,薄膜結晶性也相對提升,使鐵電特性提升,但薄膜微觀結構形成為孔洞之多孔性結構,使漏電流特性下降至2×10-6 A/cm2,不利於元件應用。
為改善元件特性,學者以固態氧化物法製作PZT粉末並添加入PVDF溶液中,鍍製薄帶(tape),結果顯示其鐵電特性及介電特性提升,但因粒徑大,造成表面粗糙度不佳以及厚度較厚,因此,本文以溶膠凝膠法(Sol-Gel Method)配製PZT先驅溶液再以後處理製程製做粒徑為50~100 nm之奈米粉末,達成降低膜厚及表面粗糙度佳之薄膜,研究結果顯示,當PZT添加量為20 wt%時,鐵電特性達15 μC/cm2,介電常數達1450,但極化後之薄膜仍量測不出壓電特性,其原因為PVDF與PZT具有差異大之聲阻抗,造成波動能量於0-3連結之膜中傳遞時損失,為改善此現象,應從結構或極化方式進行,如將連結方式改為1-3。本文以改良式極化手法-液態極化製程,對PVDF進行極化,研究結果顯示,膜之結晶性提升,使鐵電與壓電特性獲得改良,在未添加PZT奈米粉之膜所測得之鐵電特性達15 μC/cm2,交流阻抗分析測得之Kp達0.2,本文並利用SEM觀察其液態極化製程提升PVDF結晶性之機構,發現其析出之初期具有短程方向性,為纖維狀之結構,當厚度增加後,膜之表面仍可觀察到針尖狀結晶,因此,結晶性提升造成鐵電及壓電特性提升。


In recent years, the flexible electronics and transparent devices were highly expected to be used in broad applications.
In this thesis, co-sputtering technique was applied to prepare AZO thin films successfully. As the concentration of Al3+ in AZO films was 2 wt%, the lowest point of resisvitity was achieved. In this research, substrate heating technique and modification of working pressure were investigated as well. As substrate temperature was raised to 500 ℃, the higher energy of sputtered species made more impurities migrated and occupied the lattice sites which contributed the charge carriers in the films, and the resistivity of AZO films was improved to be 1×10-3 Ω-cm. In order to deposit AZO films in room temperature, the working pressure was modified and discovered that as higher mean free path of working phenomenon in chamber, the sputtered species collided the films surface with higher energy and desorbed the un-wanted particles of films, at the meanwhile, the crystallinity of films were improved that the resistivity as low as 5×10-3 Ω-cm was achieved.
In this research, PVDF ferroelectric polymer, AZO transparent conductive electrode and PET flexible substrate were used to demonstrate the prototype of flexible and transparent device and the ferro-, piezo-, dielectric and transmittance properties were studied. The polymer chains in thin films were twisted and caused the dipoles on chains locked when switching, therefore, the ferro-, piezo-, and dielectric properties were deteriorated. To resolve this phenomenon, CO2 laser annealing technique was applied to melt and recrystallized the films in short time period. From the results, the remnant polarization enhanced as the crystallinity of PVDF improved, but electric property of leakage current deteriorated because micro pores formed in microstructure of PVDF films. In order to increase the polarization directions in films and improve the electric properties, the nano sized PZT powder was prepared by using PZT sol-gel precursor and added into PVDF films, from the results, Pr value and dielectric properties were improved to 15 μC/cm2 and 1450, respectively. Because of the difference in acoustic wave impedance of PZT and PVDF, the acoustic wave energy lost when transferring from one to another and caused very weak piezoelectric properties. In this thesis, the liquid state poling process was applied to pole the PVDF, and the Kp value and ferroelectric property was improved to 0.2 and 15 μC/cm2, respectively. To realize the mechanism of liquid state poling process, SEM investigation was adopted, as a result, the fiber-like and short-range ordered microstructure formed which improved the crystallinity of PVDF films, therefore the ferro- and piezoelectric properties were highly enhanced.

中文摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XII 一、前言 I 二、文獻回顧 2 2.1 透明導電薄膜 2 2.1.1 透明導電氧化物之光電性質 4 1. 電學性質 4 2. 光學性質 5 A. Burstein Moss Shift Effect 5 B. 可見光及近紅外光區 6 C. 紅外光區 7 2.1.3 薄膜濺鍍製程與微觀結構之影響 7 2.2聚偏二弗乙烯(polyvinylidene fluoride,PVDF) 9 2.2.1 壓電(Piezoelectric effect) 12 2.2.2 焦電(Pyroelectric effect) 12 2.2.3 鐵電(Ferroelectric effect) 13 2.3 熱處理 13 2.4 極化(Poling process) 14 2.5 材料與研究發展現況 15 2.5.1 透明導電薄膜材料發展近況 15 2.5.2 PVDF鐵電高分子材料發展現況 16 2.5.3 PVDF鐵電高分子發展近況 16 三、實驗方法 18 3.1 實驗設計 18 3.2 氧化鋅靶材製作 19 3.3 AZO透明導電薄膜電極製備 20 3.4 PVDF鐵電高分子薄膜製備 21 3.5 PZT奈米粉末製備 22 3.6實驗材料 22 3.7 實驗設備與藥品清單 23 3.7.1磁控反應式濺鍍系統 24 3.7.2旋鍍系統 25 3.8實驗參數 25 3.8.1 AZO薄膜共濺鍍實驗參數 25 3.8.2 PVDF薄膜旋鍍實驗參數 26 3.8.3 薄膜極化製程參數 27 3.9 光電量測儀器與原理 28 3.9.1 四點探針量測原理 28 3.9.2 霍爾量測 29 3.9.3 分光光譜儀量測原理 30 3.10 薄膜微觀結構與成分分析 30 3.11 愛克斯光繞射分析 31 3.12 鐵電量測系統 31 四、結果與討論 32 4.1 AZO透明導電薄膜 32 4.1.1 摻雜量對AZO薄膜物理性質之影響 32 4.1.2 基板加熱法對AZO薄膜性質之影響 33 4.1.3 氣體壓力變化對AZO薄膜性質之影響 35 4.2 PVDF鐵電高分子之製備與特性分析 37 4.2.1 PVDF濃度與膜厚控制 38 4.2.2 PVDF熱處理溫度對材料表面微觀結構與熱處理溫度之關係 39 4.2.3 PVDF熱處理溫度對鐵電特性之影響 41 4.2.4 PVDF薄膜膜厚對可見光穿透率之影響 45 4.2.5 CO2雷射處理參數於PVDF薄膜結晶性及微觀結構之影響 45 小結論 47 4.3以PZT奈米粉末添加PVDF製備薄膜與特性提升 48 4.3.1 PZT奈米粉末XRD與粒徑分析 48 4.3.2不同PZT奈米粉含量之PVDF溶液製備鐵電薄膜之特性提升 49 4.3.2 鐵電薄膜漏電流改良及微觀分析 58 4.3.3 鐵電薄膜介電特性量測 60 小結論 61 4.4極化處理(Poling process) 62 4.4.1 固態薄膜極化處理 62 4.4.2 聲阻抗分析 63 4.4.3 改良式極化處理 63 小結論 65 4.4.4 液態極化後之鐵電特性分析 65 4.4.5液態極化機制之微觀分析 66 小結論 68 五、結論與未來展望 69 5.1 結論 69 5.2 未來展望 70 參考文獻列表 71 附錄 ...............................................................77 附錄一 77 附錄二 82 附錄三 80 附錄四 84 附錄五 85 圖目錄 Fig. 2 - 1 Crystalline structure of AZO material………………………………………2 Fig. 2 - 2 Band gap of TCO materials…………………………………………………6 Fig. 2 - 3 Schematic representation of thin films deposition………………………….8 Fig. 2 - 4 Microstructure zone diagram for thin films deposited by magnetron sputtering. (Tm is the melting temperature of deposited material.)……………………9 Fig. 2 - 5A Crystal structures of PVDF………………………………………………10 Fig. 2-5B Crystal structures of PVDF………………………………..………………10 Fig.2-5C Process procedures for PVDF……………………………….……………..11 Fig. 2 - 6 Pyroelectric property…………………………………………………...….13 Fig. 2 - 7 ferroelectric property – hysteresis loop……………………………………13 Fig. 2 - 8 Laser annealing machine…………………………………………………..14 Fig. 3 - 1 The flow chart for the thesis……………………………………...………..18 Fig. 3 - 2 ZnO target producing flow chart…………………………………………..19 Fig. 3 - 3 Flow chart of AZO thin film preparation…………………………...….….20 Fig. 3 - 4 Flow chart of PVDF thin film preparation………………………………...21 Fig. 3 - 5 Preparation of PZT nano-particles via Sol-Gel precursor…………………22 Fig. 3 - 6 Sputtering system………………………………………………………….24 Fig. 3 - 7 Steps for studying of PVDF thin film properties………………………….27 Fig. 3 - 8 Instrument of Four-probe resistivity measurement………………………..29 Fig. 3 - 9 Scheme of Hall effect measurement……………………………………….29 Fig. 3 - 10 Transmittance spectrometer………………………………………………30 Fig. 3 - 11 Principles of SEM investigation………………………………………….30 Fig. 3 - 12 Scheme of Precision workstation units…………………………………..31 Fig. 4 - 1 Doping concentration versus resistivity diagram………………………….33 Fig. 4 - 2 Substrate temperature versus resistivity diagram………………………….33 Fig. 4 - 3 A Transmittance versus varied substrate temperature……………………..34 Fig. 4-3 B Energy gap versus varied substrate temperature…………………………34 Fig. 4 - 4 Microstructure of AZO electrode………………………………………….35 Fig. 4 - 5 Hall measurement of specimens deposited under various Ar gas pressure………………………………………………………………………………35 Fig. 4 - 6 Crystallinity analysis of AZO thin film using XRD analysis showing that the crystallinity as higher as deposited in lower Ar gas flow rate……………………….36 Fig. 4 - 7 Diagram of FWHM analysis of AZO films deposited under varied Ar gas flowing rate, showing that grain size could be modified by controlling the Ar gas flow…………………………………………………………………………………..36 Fig. 4 - 8A Ar flow rate 3 sccm………………………………………………………37 Fig. 4-8B Ar flow rate 4.5 sccm……………………………………………………...37 Fig. 4-8C Ar flow rate 10 sccm………………………………………………………37 Fig. 4 - 9 Variation of film-thickness as a function of spinning speed and composition of films, (A) pure PVDF films, (B) varied PZT content in PVDF films…………….38 Fig. 4 - 10 Surface structures of PVDF 10wt%_160oC for 1 hr investigated by OM analysis……………………………………………………………………………….39 Fig. 4 - 11 Surface microstructure of PVDF thin film indicating porous and unsmooth surface microstructure of PVDF films surface which investigated at (A) 6000X, (B) 60000X…………………………………………………………………………...40 Fig. 4 - 12 Surface microstructure of PVDF thin film showing the fiber-like microstructure of PVDF films which investigated at (A) 6000X, (B) 60000X……...41 Fig. 4 - 13 PVDF 5 wt%_80 ℃ for 1hr........................................................................42 Fig. 4 - 14 Hysteresis loop measurements of PVDF 10wt% specimens annealed at different temperatures of (A) 80 ℃ for 1hr, (B) 160 ℃ for 1 hr, (C) 180 ℃ for 1 hr, showing Pr were sensitive to the processing temperature……………………………43 Fig. 4 - 15 Hysteresis loop measurements of PVDF 10wt% specimens two-step annealed at 100 ℃ for 22min firstly, and (A) 160 ℃ for 1 hr, (B) 160 ℃ for 1 hr, showing improved ferroelectric property…………………………………………….44 Fig. 4 - 16 Comparison of PVDF thin films annealed at different tempretures……...44 Fig. 4 - 17 Effects of different spin speed on PVDF thin films………………………45 Fig. 4 - 18 Varied transmittance of PVDF coatings with different thickness………...45 Fig. 4 - 19 XRD analysis showing that intensity of α phase at 34O as higher as laser annealing period longer…………………………………………………………………………………………………...46 Fig. 4 - 1 PE measurement showing that Pr value as higher as laser annealing period longer…………………………………………………………………………………46 Fig. 4 – 21 Surface microstructure of PVDF thin film showing that pores as structural defects appeared after laser annealed………………………………………………...47 Fig. 4 - 22 Leakage current as higher as annealed for longer period………………...47 Fig. 4 - 23 XRD analysis showing that well-crystallized PZT nano-powder achieved after calcined at 650 ℃……………………………………………………………...49 Fig. 4 - 24 PZT particle size test showing fine particle size of PZT ceramic was distributed between 50〜100 nm…………………………………………………….49 Fig. 4 - 25 Ferroelectric property of PVDF enhanced PZT thin film, showed the increased Pr value after PZT 3 wt% added to PVDF films………………………….50 Fig. 4 – 26 PE curve measurement showing improved Pr value(3.7 μC/cm2 ) after PZT(5 wt%) nano-powder added in films…………………………………………...51 Fig. 4 – 27 SEM analysis showing that PZT(5 wt%) added in films without causing cracks on film surface which investigated at (A) 6000X, (B) 20000X, (C) 60000X……………………………………………………………………………….51 Fig. 4 -28 Variation of Pr value of PZT added PVDF films as a function of film thickness……………………………………………………………………………...52 Fig. 4 – 29 PE curve measurement showing that Pr value was 3.8μC/cm2 after PZT content increased to 10 wt%. ………………………………………………………...52 Fig. 4 – 30 SEM analysis showing that micro cracks appeared on films surface after PZT content amount increased to 10 wt% which investigated at (A) 6000X, (B) 20000X, (C) 60000X, (D) 60000X…………………………………………………..53 Fig. 4 – 31 PE curve measurement showing that Pr value was improved to 15μC/cm2 after PZT content amount raised to 20 wt%................................................................54 Fig. 4 -32 SEM analysis showing that higher PZT powder content amount in films caused structural defects and leakage current which investigated at (A) 6000X, (B) 20000X, (C) 60000X…………………………………………………………….54 Fig. 4 – 33 Variation of Pr value of PZT 20 wt% added PVDF films as a function of film thickness………………………………………………………………………...55 Fig. 4 – 34 PE curve measurement showing that highly improved Pr value (28μC/cm2 ) after PZT content amount raised to 50 wt%.............................55 Fig. 4 - 35 SEM analysis showing that cracks on surface and clustered powders in films which investigated at (A) 6000X, (B) 20000X, (C) 60000X, (D) 60000X……56 Fig. 4 – 36 PE curve measurement showing that the Pr value as higher as PZT content amount raised proportionally………………………………………………………...57 Fig. 4 – 37 Leakage current measurement showing that leakage current as higher as PZT content amount raised and caused more structural defects of films…………….57 Fig. 4 – 38 PE curve measurement showing the saturated area without deterioration after PVDF coated on PZT content PVDF films……………………………………..58 Fig. 4 – 39 Leakage current measurement showing that after PVDF coated on PZT content PVDF films and re-filled the structural defects lead to as low leakage current as 8×10-10 A/cm2. …………………………………………………………………….59 Fig. 4 – 40 SEM analysis showing that the structural defects were re-filled by PVDF coating layer and lead to improved electric property of leakage current…………….60 Fig. 4 - 41 PZT nano-powder were surrounded by PVDF which worked as binder and elastomer……………………………………………………………………………..60 Fig. 4 – 42 Dielectric property measurement showing that (A) dielectric constant of pure PVDF films improved as higher concentration of PVDF films, (B) dielectric constant of PZT added PVDF films improved as higher PZT content amount of films…………………………………………………………………………………..61 Fig. 4 – 43 Impedance analysis of PVDF thin films showing that (A) pure PVDF films and (B) PZT enhanced PVDF thin films were indicating no resonant peaks showed on diagrams, because of pour matching of acoustic wave energy impedance of medium……………………………………………………………………………63 Fig. 4 - 44 Impedance analysis showing that, (A)varied impedance of wet poling process treated specimen as a function of poling electric field, (B) varied Kp value as a function of poling voltage………………………………………………………….64 Fig. 4 – 45 XRD analysis showing that the diffractive intensity as higher as specimens poled at higher electric field…………………………………………………….…....65 Fig. 4 - 46 PE curve measurement showing that (A) ferroelectric property of wet poled specimens of PVDF 10 wt% films were highly improved and saturated, (B) ferroelectric property of wet poled specimens of PZT 5〜20 wt% added PVDF 10 wt% films indicated the enhanced the electric property as well………………….….66 Fig. 4 - 47 SEM analysis of percolated microstructure investigated at (A) 6000X, (B) 20000X, (C) 60000X, showing that the formation of arranged microstructure of specimens after liquid state poling process treated …………………………….……67 Fig. 4 - 48 SEM analysis of percolated microstructure investigated at (A) 60000X, showing that the formation of pin-like microstructure of specimens after liquid state poling process treated ………………………………………………………………..68 表目錄 Table 2 - 1 Table of discovered TCO materials………………………………………..3 Table 2 - 2 Valence and ionic radius of dopants……………………………………….3 Table 2 - 3 Characteristic effects of AZOtransparent conductive thin films…………..4 Table 2 - 4 Crystalline and lattice parameters of PVDF……………………………...11 Table 2 - 5 XRD peaks of PVDF……………………………………………………..11 Table 2 - 6 Poling process and characteristics………………………………………..15 Table 3 - 1 List of instruments………………………………………………………..23 Table 3 - 2 List of chemicals………………………………………………………… 23 Table 3 - 3 Effects of spin coating process…………………………………………...25 Table 3 - 4A The experimental parameters of thin film sputtering preparation……...25 Table 3 - 4 B The experimental parameters of thin film sputtering preparation……..26 Table 3 - 5 Issues for studying of PVDF thin films……………………………….….26 Table 3 - 6 Poling conditions………………………………………………………....27

1. 楊明輝, “透明導電薄膜”, 藝軒
2. W. J. Jeong, G. C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters,” Solar Energy Materials & Solar Cells Vol.65, pp.37-45(2001).
3. H. Kim, J. S. Horwitz, W. H. Kim, A. J. Makinen, Z. H.Kafafa, D. B. Chrisey, “ Doped ZnO thin film as anode materials for organic light-emitting diodes”, Thin Solid Films Vol.420-421, pp.539-543(2002).
4. S. Suzuki, T. Miyata, M. Ishii, T. Mnami, “Transparent consucting V-co-doped AZO thin films prepared by magnetron sputtering”, Thin solid films Vol.434, pp.14-19(2003).
5. H. C. Pan, M. H. Shiao, C. Y. Su, C. N. Hsiao, “Influence of sputtering parameter on the optical and electrical properties of zinc-doped indium oxide thin films”, Journal of vacuum science and technology A Vol.23, No.4, pp.1187-1191(2005).
6. Dhanajay, J. Nagaraju, S. B. Krupanidhi, “Effect of Li substitution on Dielectric and ferroelectric properties of ZnO thin films grown by pulse-laser ablation”, Journal of applied physics Vol.99, 034105(2006).
7. M. G. Wardle, J. P. Goss. P. R. Briddon, “Theory of Li in ZnO:A limitation for Li-based p-type doping”, Physical review B Vol.71, 155205(2005).
8. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, “A transparent metal:Nb-doped anatase TiO2”, Applied physics letters Vol.86, 252101(2005).
9. U. S. Joshi, Y. Matsumoto, K. Itaka, M. Sumiya, H. Koinuma, “Combinatorial synthesis of Li-doped NiO thin films and their transparent conducting properties”, Applied surface science Vol.252, pp.2524-2528(2006).
10. S. Y. Kuo, W. C. Chen, F. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, W. F. Hsieh, “Effects if doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films”, Journal of Crystal Growth Vol.287, pp.78-84(2006).
11. T. Minami, H. Sonohara, S. Takata, I. Fukuda, “Low temperature formation of textured ZnO transparent electrodes by magnetron sputtering”, J. Vac. Sci. Technol. A Vol.13, (2003).
12. X. T. Hao, L. W. Tan, K. S. Ong, F. Zhu, “High-performance low-temperature transparent conducting aluminum-doped ZnO thin films and applications”, Journal of Crystal Growth Vol.287, pp.44-47(2006).
13. S. Bose, S. Ray, A. K. Barua, “Textured aluminum-doped ZnO thin films prepared by magnetron sputtering”, J. Phys. D: Appl. Phys. Vol.29, pp.1873-1877(1996).
14. William D. Callister, Jr., “Materials science and engineering:an introduction, 5th ed.”, 高立出版, 92.
15. H. Kim, A. Pique, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulse laser deposition for organic light-emitting devices”, Thin Solid Films Vol.377-378, pp.798-802(2000).
16. Accent semiconductor technologies inc, “Hall effects”.
17. S. H. Jeong, J. H. Boo, “Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering”, Thin Solid Films Vol.447-448 pp.105-110(2004).
18. S. Chopra, S. Sharma, T.C. Goel, R.G. Mendiratta, “Structure, dielectric and pyroelectric studies of Pb1-xCaxTiO3 thin films”, solid state communication Vol.127, pp.299-304(2003).
19. 鄭世裕,”焦電材料特性及應用”,工研院材料所電子陶瓷材料及元件技術,p4-1~p4-24,1992。
20. S. T. Liu and D. Long, “Pyroelectric Detectors and Materials”, Proceedings of IEEE, Vol. 66, No. 1, (1978).
21. S. G. Porter, “A Brief Guide to Pyroelectric Detectors”, Ferroelectrics Vol.33, pp.193-206(1981).
22. 李榮斌,“雷射退火低溫製備鈦鋯酸鉛薄膜之研究”,國立台灣科技大學碩士論文,中華民國九十年。
23. 陳正劭,“鈦酸鉛與鈦酸鉛鈣之製備及其相變化與微觀結構之研究”,國立台灣科技大學碩士論文,中華民國八十七年。
24. H. Kim, A. Pique, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, D. B. Chrisey, “Effect of aluminium doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emmiting devices”, Thin solid films Vol.377~378, pp.798~802(2000).
25. J. Herrero, C. Guillen, “Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering”, Thin solid films Vol.451~452, pp.630~633 (2004).
26. X. W. Sun, L. D. Wang, H. S. Kwok, “Improved ITO thin films with a thin ZnO buffer layer by sputtering”, Thin solid films Vol.359~360, pp.75~81(2000).
27. E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Aguas, I. Ferreira, M. E. V. Costa, M. H. Godinho, P. L. Almeida, J. P. Borges, R. Martins, “Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering”, Surface and coatings technology Vol.151~152, pp.247~251(2002).
28. S. Y. Tsai, Y. M. Lu, J. J. Lu, M. H. Hon, “Comparison with electrical and optical properties of zinc oxide films deposited on the glass and PET substrates”, Surface and coatings technology Vol.200, pp.3241~3244(2006).
29. Y. Igasaki, H. Saito, “The effects of deposition rate on the structural and electrical properties of Zn:Al films deposited on (1120) oriented sapphire substrates”, Journal of applied physics Vol. 70, No.7, (1991).
30. B. M. Henry, A. G. Erlat, A. McGuigan, C. R. M. Grovenor, G. A. D. Briggs, Y. Tsukahara, T. Miyamoto, N. Noguchi, T. Niijima, “Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates”, Thin solid films Vol.381~382, pp.194-201(2001).
31. H. L. Ma, X. T. Hao, J. Ma, Y. G. Yang, S. L. Huang, F. Chen, Q. P. Wang, D. H. Zhang, “Bias voltage dependence of properties for ZnO:Al films deposited on flexible substrate”, Surface and coatings technology Vol.161, pp.58-61(2002).
32. E. Fortunato, P. Nunes, D. Costa, D. Brida, I. Ferreira, R. Martins, “Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates”, Vacuum Vol.64, pp.233-236(2002).
33. Z. L. Pei, X. B. Zhang, G. P. Zhang, J. Gong, C. Sun, R. F. Huang, L. S. Wen, ”Transparent conductive ZnO:Al thin films deposited on flexible substrates prepared by direct current magnetron sputtering”, Thin solid films Vol.497~498, pp.20-23(2006).
34. T. L. Yang, D. H. Zhang, J. Ma, H. L. Ma, Y. Chen, ”Transparent conducting ZnO:Al films depsoited on organic substrates deposited by r.f. magnetron-sputtering”, Thin solid films Vol.325~326, pp.60-62(1998).
35. Q. Zou, H. E. Ruda, B. G. Yacobi, K. Saegusa, M. Ferrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils”, Appliedphysics letters Vol.77, No.7, pp.1038-1040(2000).
36. D. A. Neamen, “Semiconductor physics and devices: basic principles, 3rd ed”, McHill, 2005.
37.
38. Milton Ohring, “Materials science of thin films”, Academic press chpter 6, 9.
39. http://www.texloc.com/closet/cl_pvdf_properties.htm
40. http://www.chemblink.com/products/24937-79-9.htm
41. http://english.che.ncku.edu.tw/papers/G-Blends/G058.pdf
42. http://www.fluorotherm.com/pvdfproperties.htm
43.http://www.solvaymembranes.com/properties/fluoropolymers/copolymers/0,,182 89-2-0,00.htm#Mechanical
44. E. Bormashenko, R. Pogreb, Y. Socol, M. H. Ithaq, V. Streltsov, S. Sutovski, A. Sheshnev, Y. Bormashenko, “Polyvinylidene Fluoride-Piezoelectric polymer for integrated infrared optics applications”, Optical materials Vol.27, pp.429-434(2004).
45. 江進富, “以溶膠凝膠法製備鋯鈦酸鉛鐵電薄膜與錳酸鍶鑭氧化物電極薄膜及應用元件製程規劃”, 國立台灣科技大學碩士論文, 民國90年6月。
46. 范明忠,“磁控式濺鍍法製備氧化物電極薄膜之研究及元件應用”, 國立台灣科技大學碩士論文, 民國91年6月。
47. X. He, K. Yao, B. K. Gan, “Phase transition and properties of a ferroelectric poly(vinydene fluoride-hexafluoropropylene) copolymer”, Journal of applied physics Vol.97, 084101(2005).
48. M. Wegener, J. Hesse, T. Wegener, R. Gerhard-Multhaupt, ”Patterned ferro-,pyro- and piezoelectricity in poly(vinylidene fluoride) by means of laser-induced irreversible β→α phase thansformation”, Journal of applied physics Vol.91, No.5, (2002).
49. S. P. Bodhane, V. S. Shirodkar, ”Change in crystallinity of poly(Vinylidene fluoride) due to thermal evaporation”, John Wiley and Sons, (1996).
50. M. Benz, W. B. Eular, “Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy”, Journal of applied polymer science Vol.89, pp.1093-1100(2003).
51. H. S. Nalwa, “Ferroelectric polymers-Chemistry, physics and application”, Marcel dekker.
52. N. A. Hakeem, H. I. Abdelkader, N. A. El-sheshtawi, I. S. Eleshmawi, “Spectroscopy, thermal, and electrical investigations of PVDF films filled with BiCl3”, Journal of applied polymer science, Vol102, pp.2125-2131(2006).
53. Q. Q. Zhang, S. J. Gross, S. Tadigatapa, T. N. Jackson, F. T. Djuth, S. Trolier McKinstry, “Lead zirconate titanate films for d33 mode”, Sensors and actuators A, Vol.105, pp.91~97(2003).
54. C. Guillen, J. Herrero, “Polycrystalline growth and recrystallization processes in sputtered ITO thin films”, Thin solid films Vol.509~510, pp.260~264(2006).
55. C. F. Chou, H. C. Pan and C. C. Chou “Electrical Properties and Microstructures of PbZrTiO3 Thin Films Prepared By Laser Annealing Techniques”, Jpn. J. Appl. Phys. Vol.41, No.11B, part 1, pp.6679~6681(2002).
56. H. C. Pan, C. C. Chou and H. L. Tsai, “Low temperature processing of sol-gel derived La0.5Sr0.5MnO3 buffer electrode and PbZr0.52Ti0.48O3 films using CO2 laser annelaing”, Applied Physics Letters, Vol.83, No.15, (2003).
57. 劉柏亨,”CO2雷射低溫熱處理鋯鈦酸鉛鐵電薄膜於不同基材之電性研究”,國立台灣科技大學碩士論文,中華民國九十五年。
58. 張鈞源,”複合材料電極濺鍍於鐵電材料之電性研究”,國立台灣科技大學碩士論文,中華民國九十四年。
59. K. Takashima, T. Oda, “Space and surface charge behaviour analysis of plasma pre-processed dielectric thin films”, IEEE, p.p.2052~2057 (1997).
60. B. Ploss, W. Y. Ng, H. L. W. Chan, B. Ploss, C. L. Choy, “Poling study of PZT/P(VDF-TrFE) composites”, Composites science and technology Vol.61, pp.957~962(2001).
61. R. B. H. Tahar, N. B. H. Tahar, “crystallographic orientation in pure and aluminium-doped zinc oxide thin films prepared by sol-gel technique”, Journal of amarica ceramic society Vol.88, No.7, pp.1725~1728(2005).
62. B. Thestrup, J. Schou, “transparent conducting AZO and ITO films produced by pulsed laser ablation at 355 nm”, Applied physics. A Vol.69, pp.807~810(1990).
63. L. D. Perkins, J. A. del Cueto, J. L. Alleman, C. Warmsignh, B. M. Keyes, L. M. Gedvilas, P. A. Parilla, B. To, D. W. Readey, D. S. Ginley, “Combinational studies of Zn-Al_O and Zn-Sn-O transparent conducting oxide thin films”, Thin solid films Vol.411, pp.152~160(2002)
64. Carlos O. G. Morain, R. G. Ballesteos, E. S. Gomez, “polyvinylidene difluoride (PVDF) pressure sensor for biomedical application”, IEEE, (2004).
65. A. Mahrane, M. Djafari-Rouhani, A. Najmi, D. Franquoes, D. Esteve, “P(VDF-TrFE) copolymer sensor for passive IR detection in automotives”, Sensors and actuators A, Vol.46~47, pp.399~402(1995).
66. M. E. Motamedi, “acoustic sensor technology”, IEEE, (2004).
67. N. P. Rao, J. Dargahi, M. Kahrizi, S. Prasad, “design and fabrication of a micro-tactile sensor”, IEEE, (2003).
68. N. Cai, J. Zhai, C. W. Nan, Y. Lin, Z. Shi, ”dielectric ferroelectric, magnetic, and magnetoelectric properties of multiferroic laminated composites”, Physics review B, Vol.68, 224103(2003).
69. M. Wu, L. L. Shaw, “on the improved properties of injection-molded, carbon nanotube-filled PET/PVDF blends”, Journal of power sources Vol.136, pp.37~44 (2004).
70. D. Sinha, P. K. C. Pillai, “the conductivity behaviour in lead zirconate titanate polyvinylidene fluoride composites”, Journal of applied physics, Vol.64, No.5, (1998).
71. A. Bottino, G. Capannelli, A. Comite, preparation and characterization of novel porous PVDF-ZrO2 composite membranes”, Desalination Vol.146, pp.35~40(2002).
72. J. S. C. Campos, A. A. Ribeiro, C. X. Cardoso, “preparation and characterization of PVDF/CaCO3 composites”, Materials science and engineering B Vol.136, pp.123~128(2007).
73. R. Singh, R. D. P. Sinha, A. Kaur, J. Kumar, ”AC conductivity and dielectric relaxation behavior of solution grown poly(vinylidene fluoride) films”, Ferroelectrics Vol.329, pp.91~99(2005).
74. M. Wegner, W. Kunstler, R. Gerhard-Multhaupt, ”piezo-,pyro-, and ferroelectricity in poly(vinylidene fluoride-hexafluoropropylene) copolymer films”, integrated ferroelectrics Vol.60, pp.111~116(2004).
75. A. Limbong, Z. Zheng, I. L. Guy, D. K. Das-Gupta, “polarization profiles in fatiqued ferroelectric polymers”, IEEE, (1999).
76. X. F. Liu, C. X. Xiong, H. J. Sun, L. J. Dong, R. Li, Y. Liu, “piezoelectric and dielectric properties of PZT/PVC and graphite doped with PZT/PVC composites”, materials science and engineering B Vol.127, pp.261~266 (2006).
77. S. K. Pandey, A. R. James, R. Raman, S. N. Chatterjee, Anshu Goyal, Chandra Prakash, T. C. Goel, “structural, ferroelectric and optical properties of PZT thin films”, physica B Vol.369~370, pp.135~142(2005).
78. N. Cai, J. Zhai, Li Liu, Y. Lin, C. W. Nan, “the magnetoelectric properties of lead zirconate titanate/terfenol-D/PVDF laminate composites”, materials science and engineering B Vol.99, pp.211~213(2003).
79. K. S. Lam, Y. W. Wong, L. S. Tai, Y. M. Poon, F. G. Shin, “dielectric and pyroelectric properties of lead zirconate titanate/polyurethane composites”, Journal of applied physics Vol.96, No.7, pp.3896~3899(2004).
80. Z. M. Dang, H. Y. Wang, Y. H. Zhang, J. Q. Qi, “morphology and dielectric properties of homogeneous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3”, Macromolecular rapid communications Vol.26, pp.1185~1189(2005).
81. 蔡其成,”感光型聚偏二氟乙烯Poly(vinylidene fluoride) piezoelectric film and it’s lithographic characteristics”,國立台灣師範大學碩士論文,中華民國九十三年。
82. A. J. Moulson, J. M. Herbert, “Electroceramics 2nd edition”, Wiley.
83. Levinson, L. M., “Electronic ceramics”, Marcel Dekker, New york, (1988).

QR CODE