簡易檢索 / 詳目顯示

研究生: 鄭宇任
Yu-Ren Zheng
論文名稱: 微波通入氮氣交聯PVP閘極絕緣層應用於可撓式有機薄膜電晶體特性改善之研究
Investigation on the Ameliorative Characteristic of Flexible Organic Thin-Film Transistors for Using PVP as Gate Insulator Cross-Linked by Microwave in Nitrogen Ambient
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
陳威州
Wei-Chou Chen
涂俊豪
Chun-Hao TU
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 102
中文關鍵詞: 微波氮氣聚乙烯苯酚可撓的有機薄膜電晶體
外文關鍵詞: Microwave, Nitrogen, PVP, Flexible, Organic Thin-Film Transistors
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討微波通入氮氣交聯PVP閘極絕緣層應用於可撓式元件上,我們起初探討微波應用於玻璃基板的製程,藉此找到微波應用於玻璃基板的最佳製程條件,最後再將此製程條件應用於可撓式元件製程中。
    首先,我們利用微波通入不同製程氣體交聯PVP,藉此發現微波通入氮氣的效果最為顯著。其次,透過微波通入不同氮氣流量交聯PVP,我們從中發現微波通入氮氣後,氮可以有效與PVP中的斷鍵、懸浮鍵(dangle bond)鍵解,並且減少PVP中的氫氧根,不過當通入的氮氣過多時,並無法有效降低閘極絕緣層中的氫氧根,反而使微波交聯PVP的效果下降,因此我們選用微波通入氮氣的最佳流量為20sccm。再者,微波通入氮氣在不同加熱時間下交聯PVP可發現當加熱時間到達60分鐘時,其平帶電壓逐漸往VGS=0V的方向偏移,Ioff降了至0.18nA,這代表PVP有充分交聯,以及所通入的氮與斷鍵、懸浮鍵鍵解,使其中的斷鍵、懸浮鍵減少,其元件載子移動率可達到1.516cm2/V-s、S.S只有0.674 V/decade。綜合上述的實驗與分析,選擇微波通入氮氣20sccm 60min為微波應用於玻璃基板的最佳製程條件。
    在可撓式元件的製程中,我們選用金屬鋁(Al)為閘極電極,而因為鋁的導電率相較於ITO的導電率提升了103以上,因此我們利用微波照射閘極金屬交聯PVP的加熱時間必須重新抓取,我們經由不同加熱時間測試下找到微波通氮應用於可撓式基板的參數為N2 20 sccm 5 min,其載子移動率可達到1.064cm2/V-s ,S.S 為1.209 V/decade、Vth為 -12.71V,成功做出Mobility>1的可撓式元件。


    The research aimed to discuss the application of PVP gate insulator cross-linked by Microwave in N2 ambient in flexible device. We first analyzed the process of Microwave used in glass substrate to find out the best processing condition, and finlly applied the condition to the process of flexible device.
    First, we used PVP gate insulator cross-linked by Microwave in different gas ambient, and found that the effect of N2 ambient was the most significant. From using PVP cross-linked by Microwave in different N2 flow ambient, we found that N2 could effectively bond with the broken bond and dangle bond in PVP, and reduced the hydroxyl groups in PVP. However, excessive N2 could not effectively reduce the hydroxyl groups in the gate insulator, but declined the effect of PVP gate insulator cross-linked by Microwave. Thus, we presumed that the best flow in Microwave in N2 ambient was 20sccm. Moreover, we used PVP cross-linked by Microwave under different heating time, and found that when the heating time reached 60 minutes, the flat-band voltage gradually drifted to VGS=0V and Ioff dropped to 0.18nA. It showed that PVP was fully cross-linked and N2 reduced the broken bond and dangle bond by bonding with them. The Mobility could reach 1.516cm2/V-s while S.S was 0.674 V/decade. In summary, we presumed that the best processing condition of Microwave used in glass substrate in N2 ambient was 20sccm at the heating time of 60 minutes.
    In the process of flexible device, we used Al as the gate metal because its conductivity increased by above 103 compared to the result of ITO. Thus, the heating time of gate metal cross-linked PVP using Microwave irradiation must be remeasured.
    Through the experiments under different heating time, we found that the parameter of Microwave in N2 ambient applied to flexible substrate was N2 20 sccm 5 min while its Mobility could reach 1.064cm2/V-s, S.S was 1.209 V/decade, and Vth was -12.71V. The flexible device which met Mobility>1 was fabricated successfully.

    論文摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 概論 1 1.1 研究背景 1 1.1.1. 有機薄膜電晶體 1 1.1.2. 微波與傳統退火 3 1.2 研究動機 4 1.3 論文大綱 5 第二章 有機薄膜電晶體介紹 6 2.1 有機半導體介紹 6 2.1.1. 有機半導體材料概論 6 2.1.2. 有機半導體Pentacene之特性介紹 10 2.1.3. 有機絕緣層的介紹 11 2.2 有機半導體之傳輸機制 12 2.2.1. 載子跳躍模型機制 Hopping Model) 13 2.2.2. 陷阱補捉與熱釋放模型機制 14 2.2.3. 偏極子模型機制(The polaron model) 15 2.3 有機薄膜電晶體結構 16 2.4 有機薄膜電晶體之操作模式 19 2.5 電性參數與萃取方式 25 2.5.1. 載子移動率(Mobility, μ) 25 2.5.2. 臨界電壓(Threshold Voltage, Vth) 27 2.5.3. 次臨界斜率(Subthreshold Swing, S.S.) 28 2.5.4. 開關電流比(On/Off Current Ratio, Ion/Ioff) 29 第三章 有機薄膜電晶體製程方法及分析機台 30 3.1 有機薄膜電晶體之基板製作流程 30 3.1.1. 玻璃基板(Glass Substrate) 30 3.1.2. 塑膠基板(PI Substrate) 31 3.2 閘極絕緣層(Gate Insulator Layer) 36 3.2.1. 聚乙烯苯酚(PVP)之製備 38 3.2.2. 聚乙烯苯酚(PVP)之交聯 40 3.3 主動層(Active Layer) 41 3.4 源極/汲極(Source/Drain) 42 3.5 製程機台及分析設備介紹 45 3.5.1. 製程機台 45 3.5.2. 半導體參數分析儀 48 3.5.3. 傅立葉轉換紅外線光譜儀 49 3.5.4. 原子力顯微鏡 50 3.5.5. 接觸角(Contact angle)量測 50 第四章 微波加熱原理與實驗結果 51 4.1 微波金屬加熱原理 51 4.2 不同製程氣體下對微波交聯PVP閘極絕緣層的影響 58 4.2.1. 簡介 58 4.2.2. 實驗參數 58 4.2.3. 實驗結果與分析 59 4.3 不同氣體流量對微波通氮交聯PVP閘極絕緣層的影響 67 4.3.1. 簡介 67 4.3.2. 實驗參數 67 4.3.3. 實驗結果與分析 68 4.4 不同加熱時間下對微波通氮交聯PVP閘極絕緣層的影響 75 4.4.1. 簡介 75 4.4.2. 實驗參數 75 4.4.3. 實驗結果與分析 76 第五章 微波通氮交聯PVP閘極絕緣層應用於可撓式有機薄膜電晶體 84 5.1 探討金屬閘極對於可撓式有機薄膜電晶體的影響 84 5.1.1. 簡介 84 5.1.2. 閘極電極對於有機薄膜電晶體特性的分析 84 5.2 微波通氮交聯PVP閘極絕緣層應用於不同基板上 87 5.2.1. 簡介 87 5.2.2. 實驗參數 88 5.2.3. 實驗結果與分析 89 第六章 結論與未來展望 93 6.1 結論 93 6.2 未來工作與展望 94 Reference 96

    [1] V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman”, Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices”,44Proceeding Of The IEEE, Vol. 93, p. 1330 (2005)
    [2] Z. Zheng-Tao, Jeffery T. Mason, Rudiger Dieckmann, and George G. Malliaras, “Humidity Sensors Based on Pentacene Thin-Film Transistors”, Appl. Phys. Lett. Vol. 1, p.4643 (2002)
    [3] Jaeyoung J., Sooji Nam, Jihun H., Jong-Jin Park, Jungkyun Im, Chan Eon Park and Jong Min Kim, “Photocurable polymer gate dielectrics for cylindrical organic field-effect transistors with high bending stability,” Journal of Material Chemistry, Vol. 22, p.1054 (2012).
    [4] T. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R. H. Friend, “Inkjet Printing of Polymer Thin Film Transistors,” Thin Solid Films, Vol. 438, p.279 (2003).
    [5] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plastic electronics,” Applied Physics Letters, Vol, 81, p.562 (2002).
    [6] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner,“Electrode Specific Electropolymerization of Ethylenedioxythiophene: Injection Enhancement in Organic Transistors,” Applied Physics Letters, Vol. 87, p.113501 (2005).
    [7] T. Ji, J. Xie, and V. K. Varadan, “Design of pentacene thin film transistors on flexible substrates,” Proceedings of SPIE, Vol. 5763, p. 77 (2005).
    [8] R. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, “Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464-465, p. 437 (2004). 
    [9] M. W. Shin, S. H. Jang, “Thermal Analysis of Active Layer in Organic Thin-Flm Transistors,” Organic Electronics, Vol. 13, p.767–770 (2012).
    [10] C. B. Park, J. D. Lee, “Effect of Stacked Dielectric with High Dielectric Constant and Surface Modification On Current Enhancement in Pentacene Thin-film Transistors,” Current Applied Physics, Vol. 13, p.170-175 (2013).
    [11] R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili, “Full sintering of powdered-metal bodies in a microwave field”, Nature Vol. 399, pp, 668-670 (1999)
    [12] J. Cheng, R. Roy, D. Agrawal, “Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites”, Journal of Materials Science. Letters, Vol. 20, p, 1561-1563 (2001)
    [13] R. Higuchi, H, Takashima, H, Kato, and Y. Kanno, “Thermal analysis of joule heat generated on metal thin film by microwave irradiation”, IEEE Int. Conf. Syst., P.1408-1412 (2006)
    [14] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field‐Effect Transistor with a Polythiophene Thin Film,” Applied Physics Letters, Vol. 49, p. 1210 (1986).
    [15] A. Assadi, C. Svensson, M. Willander, and O. Ingans, “Field‐Effect Mobility of Poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53, p. 195 (1988).
    [16] J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen: in “Lower Dimensional Systems and Molecular Devices, ” NATO ASI Series (1989).
    [17] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and Processable Regioregular Poly(3‐Hexylthiophene) for Thin Film Field‐Effect Transistor Applications with High Mobility,” Applied Physics Letters, Vol. 69, p. 4108 (1996).
    [18] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, p. 1741-1744 (1998).
    [19] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical Properties of Polyacetylene/ Polysiloxane Interface,” Journal of Applied Physics, Vol. 54, p. 3255 (1983).
    [20] J. H. Burroughes, C. A. Jones, and R. H. Friend, “New Semiconductor Device Physics in Polymer Diodes and Transistors,” Nature, Vol. 335, p. 137-141 (1988).
    [21] H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene Thin‐Film Transistor with High Carrier Mobility,” Applied Physics Letters, Vol. 63, p. 1372 (1993).
    [22] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” Journal of the American Chemical Society, Vol. 115, p. 8716 (1993).
    [23] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, “Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films,” Chemistry of Materials, Vol. 6, p. 1809 (1994).
    [24] A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics,” Science, Vol. 268, p. 270 (1995).
    [25] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, "Field-Effect Transistors Comprising Molecular Beam Deposited α-ω-Di-hexyl-hexathienylene and Polymeric Insulators," Synthetic Metals, Vol. 92, p. 47, (1998).
    [26] H. E. Katz, L. Torsi, A. Dodabalapur, “Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers,” Chemistry of Materials, Vol. 7, p. 2235 (1995).
    [27] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, F. Garnier, “Organic transistors using -octithiophene and , -dihexyl- -octithiophene: Influence of oligomer length versus molecular ordering on mobility,” Advanced Material, Vol. 9, p. 557 (1997).
    [28] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene,” Advanced Material, Vol. 9, p. 389 (1997).
    [29] J. H. Schön, Ch. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors,” Organic Electronics, Vol. 1, p. 57 (2000).
    [30] Y. Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, p. 606 (1997).
    [31] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” Journal of Applied Physics, Vol. 80, p. 2501 (1996).
    [32] Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, p. 80 (1996).
    [33] G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of the emiconductor/insulator interface in the characteristics of π-conjugated- oligomer-based thin-film transistors ,” Synthetic Metals, Vol. 51, p. 419 (1992).
    [34] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 thin film transistors,” Applied Physics Letters, Vol. 67, p. 121, (1995).
    [35] R. C. Haddon, T. Siegrist, R. M. Fleming, P. M. Bridenbaugh and R. A. Laudise, “Band structures of organic thin-film transistor materals,” J. MATER. CHEM, Vol. 5 (1995).
    [36] A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, “Organic n-type field-effect transistor,” Synthetic Metals, Vol. 66, p. 257 (1994).
    [37] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, p. 11331 (1996).
    [38] G. Guillaud, M. Al Sadound, and M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors,” Chemical Physics Letters, Vol. 167, p. 503 (1990).
    [39] Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, p. 207 (1998).
    [40] H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372 (1993).
    [41] C.D. Dimitrakopoulos, and P.R.L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Material, Vol. 14, p. 99-117 (2002).
    [42] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol. 10, p. 234-238 (1998).
    [43] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon,” Physical Review Letters, Vol. 103, p. 51-61 (1956).
    [44] N. F. Mott, “On the Transition to Metallic Conduction in Semiconductors,” Canadian Journal of Physics. Vol. 34, p. 1356 (1956).
    [45] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Masters Dissertation, University of Cagliari, (2009).
    [46] P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films,” Physical Review Letters, Vol. 25, p. 509 (1970).
    [47] C. W Kuo, “Properties of Carriers Transportation in Organic Thin Film Transistors,” Masters Dissertation, National Cheng Kung University, Tainan, Taiwan (2006).
    [48] G. Horowitz, “Organic Field-Effect Transistors”, Advanced Materials, Vol, 10, p. 365377 (1998).
    [49] D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on Threshold Voltage Shift in Organic Thin-Film Transistors: Deposition of SiOH on SiO2 Gate-Insulator Surface,” Applied Physics Letters, Vol. 92, p. 093309 (2008).
    [50] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root Cause of Hysteresis in Organic Thin Film Transistor with Polymer Dielectric,” Organic Electronics, Vol. 7, p. 271-275 (2006).
    [51] Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letters, Vol. 80, p. 151 (2002).

    [52] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High- Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, p.1060 (2001).

    [53] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors,” Applied Physics Letters, Vol. 84, (2004).
    [54] S. M. Sze, Physics of Semiconductor Devices, Second Edition, Wiley, New York, CH. 7 (1981).
    [55] A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, “Field-Effect Transistor Made from Solution-Procceed Organic Semiconductors,” Synthetic Metals, Vol. 88, p. 37 (1997).
    [56] F. C. Chen, T. D. Chen, B. R. Zeng, and Y. W. Chung, “Influence of mechanical strain on the electrical properties of flexible organic thin-film transistors,” Semiconductor Science and Technology, Vol. 26, p. 034005 (2011).
    [57] D. J. Yun, S. H. Lim, T. W. Lee, and S. W. Rhee, “Fabrication of the flexiblepentacene thin-film transistors on 304 and 430 stainless steel (SS) substrate,” Organic Electronics, Vol. 10, p. 970 (2009).
    [58] 曾東雄,「可撓式塑膠基板上研製有機薄膜電晶體和場效電晶體」,碩士論文,國立成功大學,台南 (2009). 
    [59] D. William, JR. Callister, “Fundamentals of Materials Science and Engineering, ” John Wiley and Sons, NY, p.128-129 (2002)
    [60] S. Mototani, S. Ochial, X. Wang, et al. “Performance of organic field-effect transistors with poly(3-hexylthiophene)as the semiconductor layer and poly(4-vinylphenol) thin film untreated and treated by hexamethyldisilazane as the gate insulator, ” Japanese Journal of Applied Physics, Vol. 47, No. 1, p. 496–500 (2008)
    [61] T. H. Kim, C. G. Han, and C. K. Song, “Instability of threshold voltage under constant bias stress in pentacene thin film transistors employing polyvinylphenol gate dielectric,” Thin Solid Films, Vol. 516, p. 1232(2008).
    [62] C. L. Fan, M. C. Shang, M. Y. Hsia, S. J. Wang, B. R. Huang, and W. D. Lee, “Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors,” APL MATERALS, Vol. 4, p. 036105(2016)
    [63] D. J. Grffiths, R. College “Introduction to Electrodynamic, ” library of congress-in-publication data (1999)
    [64] T. H. Kim, C. G. Han, and C. K. Song, “Instability of threshold voltage under constant bias stress in pentacene thin film transistors employing polyvinylphenol gate dielectric,” Thin Solid Films, Vol. 516, p. 1232(2008)
    [65] M. H. Choo, Jae Hoon Kim, and Seongil Im, “Hole transport in amorphous-crystalline-mixed and amorphous pentacene thin-film transistors,” Applied Physics Letters, Vol. 81, p. 4640 (2002).
    [66] C. L. Fan, Y. Z. Lin, and C. H. Huang, “Combined scheme of UV/ozone and HMDS treatment on a gate insulator for performance improvement of a low-temperature-processed bottom-contact OTFT,” Semiconductor Science and Technology, Vol. 26, p. 045006 (2011).
    [67] 陳意仁,「介電材料低溫交聯性聚乙烯苯酚應用於可撓曲性有機薄膜電晶體之研究」,碩士論文,國立成功大學,台南 (2007).

    無法下載圖示 全文公開日期 2022/07/17 (校內網路)
    全文公開日期 2027/07/17 (校外網路)
    全文公開日期 2027/07/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE