簡易檢索 / 詳目顯示

研究生: 黃美華
Mei-hua Huang
論文名稱: 葡聚醣/聚乙烯醇與海藻酸鈉/聚麩胺酸兩種混摻水膠的製備與性質
Preparation and properties of glucan/ poly(vinyl alcohol) and sodium alginate/poly(γ-glutamic acid) blend hydrogels
指導教授: 楊銘乾
Ming-chien Yang
口試委員: 王大銘
none
楊禎明
none
于大光
none
李振綱
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 葡聚醣聚乙烯醇薄膜傷口敷料聚麩胺酸海藻酸水膠血小板貼附pH敏感性
外文關鍵詞: Glucan; Poly(vinyl alcohol), films, poly(γ-glutamate), hydrogels, platelet adhesion, pH sensitivity
相關次數: 點閱:231下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是製備葡聚醣/聚乙烯醇共混摻膜,海藻酸鈉/聚麩胺酸鈣水膠與海藻酸鈣水膠,進而評估這三種材料的親水性、血液相容性與力學性質等試驗,最後使用動物模式完成材料貼附皮膚刺激試驗。本研究分成兩部份探討,第一部份為葡聚醣/聚乙烯醇共混摻膜製備及性質研究;第二部份為海藻酸鈉/聚麩胺酸水膠製備及性質研究。
    第一部份利用葡聚醣天然高分子與聚乙烯醇(PVA)合成高分子在未添加化學交聯劑的情況下,其中葡聚醣含量控制在7%至50%,並於110℃條件下塗佈乾燥製備葡聚醣/聚乙烯醇共混摻膜。藉由膨潤性試驗、濕潤比試驗、水份擴散面積試驗和水蒸氣的穿透速率試驗,評估薄膜的親水性質。實驗結果顯示,薄膜的膨潤率、潤濕比、水份擴散面積和水蒸氣的穿透速率均隨著葡聚醣含量的增加而增加。
    藉由評估葡聚醣/聚乙烯醇共混摻膜中葡聚醣的釋放性試驗,實驗結果得知,當共混摻膜浸泡於水溶液中後,葡聚醣會快速釋放出來,實驗結果證實,隨著膜中葡聚醣含量的增加,葡聚醣從水溶液中釋放的百分比亦隨著增加。另外,由力學評估試驗,實驗結果得知,含有葡聚醣的膜比純聚乙烯醇薄膜具有較佳的延展性。
    由血液相容性評估試驗,實驗結果得知,含有不同比例葡聚醣的共混摻膜,其對於活化部分凝血活酶時間 (APTT)、凝血酶時間 (TT) 和吸附人類血清蛋白 (HSA) 的量並沒有明顯的變化。
    由動物臨床試驗,觀察大白鼠皮膚傷口癒合情形,由實驗結果得知使用聚乙烯醇/葡聚醣共混摻膜當作敷料處理傷口比以棉製紗布處理傷口,其傷口癒合時間縮短了48%。證實聚乙烯醇/葡聚醣敷料可以大幅加速傷口癒合,而且當貼附於皮膚後不會造成刺激性。
    第二部份利用聚麩胺酸鈣與海藻酸鈉以及氯化鈣與海藻酸鈉分別製備形成海藻酸鈉/聚麩胺酸鈣水膠(AG)與海藻酸鈣水膠 (AC)。藉由膨潤性試驗、保水性試驗和水蒸氣穿透速率試驗,評估水膠的親水性質,由實驗結果得知,海藻酸鈉/聚麩胺酸鈣水膠無論是膨潤比、保水率、水蒸氣穿透率等數值都高過於海藻酸鈣水膠。由實驗結果得知海藻酸鈉/聚麩胺酸鈣水膠在pH 7.4和pH 1.2下,膨潤比分別為651%和190%。在力學性質方面,海藻酸鈉/聚麩胺酸鈣水膠的抗拉強度比海藻酸鈣水膠相對較低。
    由血液相容性試驗,證實海藻酸鈉/聚麩胺酸鈣水膠其部分凝血活酶時間比海藻酸鈣水膠相對較短。由蛋白質吸附試驗,實驗結果證實海藻酸鈣水膠和海藻酸鈉/聚麩胺酸鈣水膠,幾乎不會吸附人類血清蛋白 (HSA),然而,海藻酸鈣水膠吸附人體血漿纖維蛋白原 (HPF) 的數量約為海藻酸鈉/聚麩胺酸鈣水膠的10倍。由血小板貼附試驗,得知海藻酸鈉/聚麩胺酸鈣水膠比海藻酸鈉水膠更有助於增加血小板貼附性。由生物相容性試驗,證實海藻酸鈉/聚麩胺酸鈣水膠和海藻酸鈣水膠均不會造成細胞毒性的產生。


    Two blend hydrogels, glucan/poly (vinyl alcohol) and sodium alginate/calcium poly(γ-glutamate)were prepared. The properties of the resulting hydrogels were evaluated through hydrophilicity tests, mechanical tests, and biocompatibility. This research was divided into two parts.
    In the first part, aqueous mixture of β-glucan and poly(vinyl alcohol) (PVA) was cast into films and dried at 110°C without chemical crosslinking. The content of glucan in the film varied from 7% to 50%. The hydrophilicity of the resulting films was evaluated with swelling tests, wet area diffusion tests, and water vapor transmission tests. The swelling ratio, the wetting ratio, and the water vapor transmission rate increased with the glucan content. When contacting water, glucan was released, and the percent release of glucan increased with the glucan content. The addition of glucan made the film more ductile than pure PVA. The results of hemocompatibility test showed no significant effect on the activated partial thromboplastin time (APTT) and thrombin time (TT) and minor adsorption of human serum albumin (HSA). On observing the wound healing of rat skin, the healing time was shortened by 48% using glucan/PVA film comparing to cotton gauze. Therefore, a wound dressing made of glucan/PVA can greatly accelerate the healing without causing irritation.
    In the second part, sodium alginate (Alg) hydrogel films were crosslinked with either calcium poly(γ-glutamate) (Ca-PGA) or CaCl2. The hydrophilicity of the resulting hydrogel films was evaluated through swelling tests, water retention capacity tests, and water vapor permeation tests. The swelling ratio, water retention capacity, and the water vapor transmission rate of Alg/Ca-PGA (AG) were higher than those of Ca-Alg(AC). The swelling ratio of Alg/Ca-PGA was 651% and 190% at pH 7.4 and pH 1.2, respectively. The tensile strength of Alg/Ca-PGA hydrogel was lower than that of Ca-Alg. The results of hemocompatibility test showed that Alg/Ca-PGA caused shorter activated partial thromboplastin time (APTT) than Ca-Alg. Both Ca-Alg and Alg/Ca-PGA exhibited almost no adsorption of human serum albumin (HSA), whereas the adsorption of human plasma fibrinogen (HPF) of Ca-Alg was 10 times of that of Alg/Ca-PGA. In addition, Alg/Ca-PGA exhibited platelet adhesion higher than Ca-Alg. Furthermore, both Alg/Ca-PGA and Ca-Alg exhibited no cytotoxicity.

    中文摘要 I ABSTRACT III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1研究背景 1 1-2研究目的 4 第二章 文獻回顧 6 2-1皮膚的結構及功能 6 2-2使用敷料的目的 8 2-3皮膚傷口癒合的過程 9 2-4 敷料的使用與選擇 12 2-5水膠的定義 15 2-6葡聚醣化學結構與功能 16 2-7聚乙烯醇化學結構與特性 18 2-8 海藻酸鈉的結構與功能 19 2-9聚麩胺酸結構與功能 20 2-10止血機制 23 2-11凝血作用機制 26 2-12 血液凝固檢查-活化部分凝血活酶時間 30 2-13血液凝固檢查-凝血酶時間 31 第三章 實驗流程與製備方法 32 3-1材料 32 3-2實驗儀器 32 3-3製備流程 33 3-3-1聚葡醣/聚乙烯醇共混摻膜之製備方法 33 3-3-2聚麩胺酸/海藻酸鈉水膠之製備方法 33 3-4親水性試驗評估 34 3-4-1 水滴擴散面積試驗 34 3-4-2 葡聚醣/聚乙烯醇共混摻膜膨潤性測試 34 3-4-3 海藻酸鈉水膠膨潤性測試 35 3-4-4水蒸氣穿透速率 35 3-4-5 不同pH值對膨潤性質之影響 35 3-5 水膠的保水性質 36 3-6 葡聚醣體外釋放性質試驗評估 36 3-7 力學性質試驗 36 3-8 壓縮模數試驗 37 3-9 蛋白質吸附實驗 37 3-10 凝血性質試驗評估 39 3-10-1 APTT測試方法 39 3-10-2 TT測試方法 39 3-11 血小板黏著作用 40 3-12生物相容性試驗評估 40 3-13皮膚刺激性評估試驗 41 3-13-1單次曝露試驗 41 3-13-2反覆曝露試驗 42 3-13-3動物皮膚刺激性 42 3-14皮內刺激試驗 43 3-15動物傷口癒合評估 45 3-16組織切片 46 第四章 實驗結果與討論 47 4-1 葡聚醣/聚乙烯醇共混摻膜製備及性質探討 47 4-1-1葡聚醣/聚乙烯醇共混摻膜親水性 47 4-1-2葡聚醣/聚乙烯醇共混摻膜力學性質 48 4-1-3基材表面蛋白質吸附性質 50 4-1-4血液相容性 51 4-1-5薄膜的細胞毒性 52 4-1-6 葡聚醣的釋放 53 4-1-7皮膚刺激性測試 54 4-1-8傷口癒合過程 55 4-1-9組織切片 59 4-2 海藻酸鈉/聚麩胺酸鈣水膠與海藻酸鈣水膠製備及性質探討 61 4-2-1力學性質評估 61 4-2-2水膠的壓縮模數和交聯密度 61 4-2-3水膠膨潤性 62 4-2-4不同pH值對水膠膨潤性質之影響 63 4-2-5水膠水蒸氣穿透速率 64 4-2-6海藻酸鈉水膠的保水性質 65 4-2-7 海藻酸鈉水膠表面蛋白質吸附性質 66 4-2-8血小板黏著作用 67 4-2-9 海藻酸鈉水膠的血液相容性 67 4-2-10海藻酸鈉水膠的生物相容性 68 4-2-11皮膚刺激性 71 4-2-12皮內刺激性 72 第五章 結論 73 第六章 參考文獻 77 第七章 未來研究建議 87

    Bajpai, S. K., Sharma, S., 2004. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca+2 and Ba+2 ions. React. Funct. Polym, 59, 129-140.
    Bajpai, S. K., Tankhiwale, R., 2006. Investigation of dynamic release of vitamin B2 from calcium alginate/chitosan multilayered beads: Part II. React. Funct. Polym.66, 1565-1574.
    Bajpai, S. K., Tankhiwale, R., 2006. Investigation of water uptake behavior and stability of calcium alginate/chitosan bi-polymeric beads: Part I. React. Funct. Polym. 66, 645-658.
    Bajpai, S. K., Tankhiwale, R., 2008. Preparation, characterization and preliminary calcium release study of floating sodium alginate/dextran-based hydrogel beads: part I. Polym Int. 2008, 57, 57-65.
    Bandhyopadhyay, K., Das, D., Bhattacharyya, P., Maiti, B.R., 2001. Reaction engineering studies on biodegradation of phenol by Pseudomonas putida MTCC 1194 immobilized on calcium alginate. Biochem. Eng. J. 8, 86-179.
    Barbani, N., Bertoni, F., Ciardeelli, G.., Cristallini, C., Silvestri, D., Coluccio, M.L., Giusti, P., 2005. Bioartificial materials based on blends of dextran and poly(vinyl alcohol-co-acrylic acid). Eur. Polym. J. 41, 3004-3010.
    Baumann, H., Kokott, A., 2000. Surface modification of the polymers present in a polysulfone hollow fiber hemodialyser by covalent binding of heparin or endothelial cell surface heparan sulfate: Flow characteristics and platelet adhesion. J. Biomat. Sci. Polym. Ed. 11, 245-272.
    Bohn, J.A., BeMiller, J.N., 1995. (1-3)-β-D-glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohyd. Polym. 28, 3-14.
    Brinkman, E., van der Does, L., Bantjes, A., 1991. Poly(viny1 alcohol) -heparin hydrogels as sensor catheter membranes. Biomaterials 12, 63-70.
    Byun, Y., 1992. Binding kinetics of thrombin and anti-thrombin III with immobilized heparin using a spacer. ASAIO J, 38, M649-M653.
    Capet-Antonini, F.C., 1970. Role of calcium in the structure of fibrinogen. Biochim. Biophys. Acta. 200, 497-507.
    Carmen, R.L., Roland. B., 1997. Mechanical., water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J. Control. Release, 44, 215-225.
    Cascone, M.G., Barbani, N., Cristallini, C., Giusti, P., Ciardelli. G., Lazzeri, L., 2001. Bioartificial polymeric materials based on polysaccharides. J. Biomater. Sci. Polymer Edn. 12, 267-281.
    Cascone, M.G., Maltinti, S., Barbani. N., 1999. Effect of chitosan and dextran on the properties of poly(vinyl alcohol) hydrogels. J. Mater. Sci-Mater. M. 10, 431-435.
    Cascone, M.G.., Sim, B., Dowries, S., 1995. Blends of synthetic and natural polymers as drug delivery systems for growth hormone Biomaterials. Biomaterials 16, 569-574.
    Changez, M., Koul, V., Krishna, B., 2004. Studies on biodegradation and release of gentamicin sulphate from interpenetrating network hydrogels based on poly(acrylic acid) and gelatin: in vitro and in vivo. Biomaterials, 25, 139-146.
    Chatelet, C., Damour, O., Domard, A., 2001. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials, 22, 261-268
    Chiu, C. T., Lee. J. S., Chu, C. S., Chang, Y. P., Wang, Y. J., 2008. Development of two alginate-based wound dressings. J Mater Sci: Mater Med.19, 2503-2513.
    Chiu, H.C., Hsu, Y. H., Lin, P. J., 2002. Synthesis of pH sensitive inulin hydrogels and characterization of their swelling properties. J. Biomed. Mater. Res. Part B, 61, 146-152.
    Choi, H. J., Yang, R., Kunioka, M., 1995. Synthesis and characterization of pH sensitive and biodegradable hydrogels prepared by γ-irradiation using microbial poly(γ-glutamic acid) and polu(ε-lysine). Journal of Applied Polymer Science, 58, 807-814.
    Choi, H.J., Kunioka, M., 1995. Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradation from microbial poly γ-glutamic acid. Radiat. Phys. Chem. 46, 175-179.
    DeMerlis, C.C., Schoneker, D.R., 2003. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem. Toxicol. 41, 319-326.
    Dion, I., Baquey, C., Candelon, B., Monties, J. R., 1992. Haemocompatibility of titanium nitride. Int J Artif Organs. 15, 617-621.
    Dong. Z. F., Wang, Q., Du, Y., 2006. Alginate/gelatin blend films and their properties for drug controlled release. J. Membrane Sci.280, 37-44.
    Draget, K. I., Ostgaard, K., Smidsrod, O., 1991. Homogeneous alginate gels: a technical approach. Carbohyd Polym, 14, 159-178.
    Dubrovskii, S. A., Afanaseva, M. V., Lagutina, M. A., Kazanskii, K.S., 1990. Comprehensive characterization of superabsorbent polymer hydrogels. Polym. Bull. 24, 107-110
    Esposito, E., Pastesini, C., Cortesi, R., Gambari, R., 1995. Controlled release of 1-β-darabinofuranosylcylcytosine from hydrophilic gelatin microspheres: in vitro studies. Int. J. Pham. 117, 151-158.
    Fukunaka, Y., Iwanaga, K., Morimoto, K., Kakemi, M., Tabata, Y., 2002. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J. Control. Release.80, 333-343.
    Gombotz, W. R., Wee, S. F., 1998. Protein release from alginate matrices. Adv. Drug Deliv. Rev.31, 267-285.
    Goosen, M. F. A., Sefton, M.V., Hatton, M.W.C., 1980. Inactivation of thrombin by antithrombin III on a heparinized biomaterial. Thromb. Res. 20, 543-554.
    Hari, P.R., Thomas, C., Chandra, P., 1996. Chitosan/calcium-alginate beads for oral delivery of insulin. J. Appl. Polym. Sci. 59, 1795-1801.
    Hassan, C.M., Stewart, J.E., Peppas, N.A., 2000. Diffusional characteristics of freeze/thawed poly(vinyl alcohol) hydrogels: Applications to protein controlled release from multilaminate devices. Eur. J. Pharm. Biopharm. 49, 161-165.
    Hsieh, C.Y., Tsai, S. P., Wang, D. M., Chang, Y. N. Hsieh, H. J., 2005. Preparation of γ-PGA/chitosan composite tissue engineering matrices. Biomaterials, 26, 5617-5623.
    Ishihara, K., Fukumoto, K., Iwasaki, Y., Nakabayashi, N., 1999. Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization. Biomaterials, 20, 1545-1551.
    Iwata, H., Matsuda, S., Mitsuhashi, K., Itoh, E., Ikada,Y., 1998. A novel surgical glue composed of gelatin and N-hydroxysuccinimide activated poly(L-glutamic acid): Part 1.Synthesis of activated poly(L-glutamic acid) and its gelation with gelatin. Biomaterials, 19, 1869-1876.
    Kamata, K., Kawamoto, H., Honma,T., Iwama, T., Kim, S. H., 1998. Structural basis for chemical inhibition of human blood coagulation factor Xa. PNAS 1998, 95, 6630-6635.
    Kang, I. K., Kwon, O.H., Kim, M. K., Lee, Y. M., Sung, Y. K., 1996. Preparation and surface characterization of functional group-grafted and heparin-immobilized polyurethanes by plasma glow discharge. Biomaterials, 17, 841-847.
    Kirsner, R.S., Eaglstein, W.H., 1993. The wound healing process. Dermatol. Clin. 11, 629-640.
    Kneafsey, B., O’Shaughnessy, M., Condon, K.C., 1996. The use of calcium alginate dressings in deep hand burns. Burns, 22, 3-40.
    Kuo, C. K., Ma P. X., 2001. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering:Part1. Structure,gelation rate and mechanical properties.Biomaterials. 22, 511-521.
    Lamke, L.O., Nilsson, G.E., Reithner, H.L., 1977. The evaporative water loss from burns and the water permeability of grafts and artificial membranes used in the treatment of burns. Burns, 3, 159-165
    Lazzeri, L., 1996. Progress in Bioartificial Polymeric Materials. Trends. Polym. Sci. 4, 249-252.
    Lee, C.T., Kung, P.H., Lee, Y.D., 2005. Preparation of poly(vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohyd. Polym. 61, 348-354.
    Lee, D.Y., Ahn, H.T., Cho, K.H., 2000. A new skin equivalent model: dermal substrate that combines de-epidermized dermis with fibroblast-populated collagen matrix. J. Dermatol. Sci. 23, 132-137.
    Lee, S. B., Jeon, H.W., Lee, Y.W., Lee, Y.M., Song, K.W., Park, M.H., Nam, Y.S., Ahn, H.C., 2003. Bio-artificial skin composed of gelatin and (13), (16)-β-glucan. Biomaterials 24, 2503-2511.
    Li, J.K., Wang, N., Wu, X.S., 1998. Poly(vinyl alcohol) nanoparticles prepared by freezing–thawing process for protein / peptide drug delivery. J. Control. Release 56, 117-126.
    Li, Y., Neoh, K.G., Kang, E.T., 2004. Poly(vinyl alcohol) hydrogel fixation on poly(ethylene terephthalate) surface for biomedical application. Polymer 45, 8779-8789.
    Lin, W.C., Yu, D.G., Yang, M.C., 2006. Blood compatibility of novel poly(γ-glutamic acid)/polyvinyl alcohol hydrogels. Colloid. Surface. B. 47, 43-49.
    Lin, Y.H., Chung, C.K., Chen, C.T., Liang, H.F., Chen, S.C., Sung, H. W., 2005. Preparation of nanoparticles composed of chitosan/poly-γ-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules, 6, 1104-1112.
    Liu, T.Y., Lin, W.C., Huang, L.Y., Chen, S.Y., Yang, M.C., 2005. Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials 26, 1437-1444.
    Martinsen, A., Skjåk-Bræk, G., Smidsrød, O., 1989. Alginate as immobilization material: I.Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng, 33, 79-89.
    Mazzanti, G., Daniele, C., Tita, B., Vitali, F., Signore, A., 2005. Biological evaluation of a polyvinyl siloxane impression material. Dent. Mater. 21, 371-374.
    Mi, F.L., Shyu, S.S., Wu, Y.B., Lee, S.T., Shyong, J.Y., Huang, R.N., 2001. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22,165-173.
    Morita, R., Honda, R., Takahashi, Y., 2000. Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS) I. Design of SCRS and its release controlling factor. J. Control. Release 63, 297-304.
    Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55-63.
    Musa, S.A., Fara, D.A., Badwan, A.A., 1999. Evaluation of parameters involved in preparation and release of drug loaded in crosslinked matrices of alginate. J. Control. Release, 57, 223-232.
    Nachman, R.L., Leung, L.L., 1982.Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen. J. Clin. Invest. 69, 263-269
    Nakamura, K., Nishimura, Y., Hatakeyama, T., Hatakeyama, H., 1995. Thermal properties of water insoluble alginate films containing di- and trivalent cations. Thermochim. Acta 267, 343-353.
    Neumann, P. M., Zur, B., Ehrenreich,Y., 1981. Gelatin-based sprayable foam as skin substitute. J. Biomater. Res. 15, 9-18.
    Otani, Y., Tabata, Y., Ikada, Y., 1996. A new biological glue from gelatin and poly (L-glutamic acid). J. Biomed. Mater. Res. 31, 157-166.
    Pasparakis, G., Bouropoulos, N., 2006. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads. I Int. J. Pharm, 323, 34-42
    Pefferkorn, E., Schmitt ,A., Varogui, R., 1982. Helix-coil transition of poly(α, L-glutamic acid) at an interface: correlation with static and dynamic membrane properties.Biopolymers, 21,1451-1463.
    Peppas, N. A., Merrill, E.W., 1977. Development of Semicrystalline Poly(vinyl alcohol) hydrogels for biomedical applications. J. Biomed. Mater. Res , 11, 423-434.
    Queen, D., Gaylor, J.D.S., Evans, J.H., Courtney, J.M., Reid, W.H., 1987. The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials 8, 367-371.
    Rasmussen, M.R., Snabe, T., Pedersen, L.H., 2003. Numerical modelling of insulin and amyloglucosidase release from swelling Ca-alginate beads. J. Control. Release, 91, 395-405.
    Rassis, D. K., Saguy, I. S., Nussinovitch, A., 2002. Collapse shrinkage and structural changes in dried alginate gels containing fillers. Food Hydrocolloid. 16, 139-151.
    Rhim, J. W., 2004. Physical and mechanical properties of water resistant sodium alginate films. LWT-Food. Sci. Tech, 37, 323-330.
    Roger, S., Talbot, D., Bee, A., 2006. Preparation and effect of Ca2+ on water solubility, particle release and swelling properties of magnetic alginate films. J. Magn. Magn. Mater, 305, 221-227
    Ross, M.H, Romrell. L. J, Kaye. G.I., 1998. Histoology: A Test and Atlas. Williams and Wilkins, 3, 58-139.
    Rubio, M. R., Ghaly, E. S., 1994, In-vitro release of acetaminophen from sodium alginate controlled release pellets. Drug Dev. Ind. Pharm., 20, 1239-1251.
    Sarti, B., Scandola, M., 1995. Viscoelastic and thermal properties of collagen/poly(vinyl alcohol) blends. Biomaterials 16, 785-792.
    Schiling, J.A., 1976. Wound healing. Surg Clin North Am, 56, 857-859
    Seabra, A.B., De Oliveira, M.G., 2004. Poly(vinyl alcohol) and poly(vinyl pyrrolidone) blended films for local nitric oxide release. Biomaterials 25, 3773-3782.
    Seifert, D.B., Phillips, J.A., 1997. Production of small, monodispersed alginate beads for cell immobilization. Biotechnol. Prog.13, 562-568.
    Shaheen, S.M., Yamaura, K., 2003. Preparation of theophylline hydrogels of atactic poly(vinyl alcohol) /NaCl/H2O system for drug delivery system. J. Control. Release 81, 367-377.
    Shih, I. L., Wu, P. J., Shieh, C. J., 2005. Microbial production of a poly(γ-glutamic acid) derivative by Bacillus subtilis. Process Biochem. 40, 2827-2832.
    Shih, I. L., Y.T. Van., 2001. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79, 207-225.
    Son, H.J., Bae, H.C., Kim, H.J., Lee, D.H., Han, D.W., Park, J.C., 2005, Effects of β-glucan on proliferation and migration of fibroblasts. Curr. Appl. Phys. 5, 468-471.
    Sudhamania, S.R., Prasada, M.S., Sankarb, K.U., 2003. DSC and FTIR studies on Gellan and Polyvinyl alcohol (PVA) blend films. Food Hydrocolloid. 17, 245-250.
    Tabata, Y., Ikada, Y., 1998. Protein release from gelatin matrices. Adv. Drug Deliv. Rev., 31, 287-301.
    Vidyalakshmi, K., Rashmi, K.N., Pramod, T. M., Siddaramaiah, K. 2004. Studies on Formulation and In Vitro Evaluation of PVA/Chitosan Blend Films for Drug Delivery. J. Macromol. Sci. Pure. A41, 115-1122.
    Wichterle, O., Lim, D., 1960. Hydrophilic gels for biological use. Nature, 185, 117-118
    Winter, G.D., 1962. Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig. Nature. 193, 293-294.
    Winter, G.D., Scales, J.T., 1963. The effect of air drying and dressings on the surface of a wound. Nature. 197, 91.
    Wu, J.Y., Liu, S.Q., Heng, P.W.S., Yang, Y.Y., 2005. Evaluating proteins release from, and their interactions with thermosensitive poly (N-isopropylacrylamide) hydrogels. J. Control Release, 102, 361-372.
    Yamada, N., Uchinuma, E., Kuroyanagi, Y., 1999. Clinical evaluation of an allogeneic cultured dermal substitute composed of fibroblasts within a spongy collagen matrix. Scand. J. Plast. Reconstr. 33, 1-8.
    Yang, M.C., Liu, T.Y., 2003. The permeation performance of polyacrylonitrile/
    polyvinylidine fluoride blend membranes. J. Membr. Sci. 226, 119–130
    Yokoi, H., Arima, T., Hirose, J., Hayashi, S., Takasaki, Y., 1996. Flocculation properties of poly(γ-glutamic acid) produced by Bacillus subtilis. Journal of Fermentation and Bioengineering, 82, 84-87.
    Yokoi, H., Natsuda, O., Hirose, J., Hayashi, S., Takasaki, Y., 1995. Characteristics of a biopolymer flocculant produced by Bacillus sp. PY-90. Journal of Fermentation and Bioengineering, 79, 378-380.
    Yotsuyanagi, T., Yoshioka, I., Segi, N., Ikeda, K., 1991. Acid-induced and calcium-induced gelation of alginic acid: bead formation and pH dependent swelling. Chem. Pharm. Bull, 39, 1072-1074.
    Yu, H.J., Xu, X.Y., Chen., X. S., Hao, J.Q., Jing, X.B., 2006. Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels, J. Appl. Polymer Sci. 101, 2453-2463.
    Zanuy D., Aleman C., Guerra S.M., 1998. On the helical conformation of un-ionized poly(γ-glutamic acid ), Int.J.Biol.Macromol. 23, 175-184.
    何敏夫,2008,血液學,合記書局有限公司
    許芳菁,2007,海藻酸-聚麩胺酸水膠應用於創傷敷料之評估,國立台灣科技大學,碩士論文
    郭家維,2007,以γ-聚麩胺酸交聯海藻酸並利用感溫性F127改良水膠性質之探討,國立台灣科技大學,碩士論文
    陳秀男,2004,全方位菇蕈多醣體,上宏茂生物科技研發中心
    葉碧芳,2005,實用傷口護理,華杏出版股份有限公司

    QR CODE