簡易檢索 / 詳目顯示

研究生: 陳廷碩
Ting-Shuo Chen
論文名稱: 以裴氏圖網路模型為基礎之機電系統實現方法
A Petri Net Model-based Mechatronics System Implementation Approach
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 傅立成
Li-Chen Fu
蘇順豐
Shun-Feng Su
鄭慕德
Mu-Der Jeng
宋開泰
Kai-Tai Song
林其禹
Chyi-Yeu Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 138
中文關鍵詞: 模型導向實現方法裴氏圖網路無線感測網路馬達伺服控制機電整合
外文關鍵詞: wireless sensor networks, Petri nets, model-based implementation approach, motor servo control, mechatronics integration
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機電系統是由機構、電機電子模組、軟體以及控制系統所整合而成,其中軟體與控制系統的設計在機電系統中扮演著重要的角色,其負責建構各系統功能;包括:環境感知模組、馬達控制模組以及決策等等。然而,機電整合系統之程式撰寫以及維護工作對於程式開發者而言是不容易的。因此,以模型為基礎之系統實現方法因應提出以做為快速且有效率之系統開發方案。此外,效能分析也是相當重要的,其可驗證系統運作流程以避免系統因程式執行程序之錯誤而造成系統損害。有鑑於此,本論文提出一以裴氏圖網路模型為基礎之機電系統實現方法論。此方法論包括:『以裴氏圖網路為基礎之無線感測節點架構(Petri-net-based Wireless Sensor Node Architecture;PN-WSNA)』以及『可控制型裴氏圖網路(Controllable Petri Net;CrPN)』。PN-WSNA負責機電系統感測資料收集以及系統決策;CrPN負責馬達伺服控制。最後,本論文以不同機電系統之開發案例進行探討,並驗證此一方法論之可行性。


    A mechatronics system is an integrated system that consists of mechanical components, electrical and electronic components, software modules and control systems. Software modules and control systems play vital roles in mechatronics system design. They are responsible for realizing operational functions, such as perception, motor control and decision. However, it is difficult to efficiently implement and maintain the software code. Therefore, a model-based implementation approach is proposed for realizing systems by using models instead of programming native code to perform fast and efficient system implementation solutions. Performance evaluation is another crucial step in the implementation process that validates the operational procedures before system deployment. In this manner, system reliability can be improved by preventing potential procedural problems. Therefore, this dissertation presents a model-based implementation approaches to realize mechatronics systems. This approach consists of a Petri-net-based wireless sensor node architecture (PN-WSNA) and a controllable Petri net (CrPN). The PN-WSNA is used to model and realize the tasks of sensor data collection and decision, whereas CrPN is used in servo motor control systems. Finally, the modeling and implementation of several mechatronics systems are discussed. In addition to the tasks of modeling and implementation, performance evaluations for these case studies are also conducted to validate the feasibility of the proposed PN-WSNA and CrPN approaches.

    Table of Contents 誌謝 I 中文摘要 II Abstract III Table of Contents IV List of Figures VI List of Tables X Chapter 1 Introduction 11 1.1 Background and Objectives 11 1.2 Literature Review 14 1.3 Thesis Organization 20 1.4 Contributions 21 Chapter 2 System Architecture 23 2.1 Mechatronics Systems 23 2.2 Development of Mechatronics System 24 2.3 Mechatronics Integration and Servo Control Systems 25 Chapter 3 PN-WSNA 27 3.1 Introduction of PN-WSNA 27 3.2 Definition of PN-WSNA 27 3.3 Typical Applications and Theoretical Equivalence Evaluation 34 3.4 A PN-WSNA Example 41 Chapter 4 CrPN 56 4.1 Introduction of CrPN 56 4.2 Definition of CrPN 59 4.3 Introduction of Position Servo Control Systems 69 4.4 Modeling Arithmetic Operations Using CrPN 70 Chapter 5 Implementation and Case Studies 74 5.1 Implementations of Inference Engine and User Interface 74 5.2 Case Studies of PN-WSNA with Eye-hand-leg Coordination 88 5.3 Case Studies of CrPN with P- and PI-Controllers 113 Chapter 6 Conclusion and Future works 136 Reference 139 Biography 145 PUBLICATION 145

    [1] L. Q. Zhuang, W. Liu, J. B. Zhang, D. H. Zhang, and I. Kamajaya, “Distributed asset tracking using wireless sensor network,” IEEE International Conference on Emerging Technology and Factory Automation, pp. 1165 – 1168, 2008.
    [2] K. Romer and F. Mattern, “The design space of wireless sensor networks,” IEEE Wireless Communication, vol. 11, no. 6, pp. 54–61, 2004.
    [3] C. Suh and Y. -B. Ko, “Design and implementation of intelligent home control systems based on active sensor networks,” IEEE Transaction on Consumer Electronics, vol. 54, no. 3, pp. 1177–1184, 2008.
    [4] T. Murata, “Petri nets: properties, analysis and applications,” Proceeding of IEEE, vol. 77, no. 4, pp. 541 – 580, 1989.
    [5] Y. Liu, S. Liu, and H. Wang, “DSP control implement of permanent magnet synchronous ac servo motor based on vector control,” International Conference on Mechatronics and Automation, pp. 866 – 870, 2009.
    [6] Y. W. Tu and M. T. Ho, “Robust second-order controller synthesis for model matching of interval plants and its application to servo motor control,” IEEE Transaction on Control System Technology, vol. 20, no. 2, pp. 530 – 537, 2012.
    [7] S. Murakami, M. Ohto, M. Hisatsune, and T. Shiota, “Encoderless motor design for servo drive applications,” International Conference on Power Electronics and ECCE Asia, pp. 2196 – 2203, 2011.
    [8] LabVIEW from National Instruments [Online]. Available: http://www.ni.com/labview/zht/ [Access data: 2013/07/17]
    [9] Simulink from MathWorks [Online]. Available: http://www.mathworks.com/products/simulink/ [Access data: 2013/07/17]
    [10] Microsoft Robotics Developer Studio from Microsoft [Online]. Available: http://www.microsoft.com/robotics/ [Access data: 2013/07/17]
    [11] LEGO Mindstorms NXT from LEGO [Online]. Available: http://mindstorms.lego.com/en-us/default.aspx [Access data: 2013/07/17]
    [12] A. Avnur, “Finite state machines for real-time software engineering,” Computer and Control Engineering Journal, vol. 1, no. 6, pp. 275 – 278, 1990.
    [13] C. Manasseh and R. Sengupta, “Middleware to enhance mobile communications for road safety and traffic mobility applications,” IET Intelligent Transport System, vol. 4, no. 1, pp. 24 – 36, 2010.
    [14] C. H. Kuo and J. W. Siao, “Petri net based reconfigurable wireless sensor networks for intelligent monitoring systems,” International Conference on Computer Science Engineering, vol. 2, pp. 897 – 902, 2009.
    [15] Y. Cao and G. Chen, ”A fuzzy Petri-nets model for computing with words,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 3, pp. 486 – 499, 2010.
    [16] V. R. L. Shen, Y. S. Chang, and T. T. Y. Juang, “Supervised and unsupervised learning by using Petri nets,” IEEE Transaction on System, Man and Cybernetic Part A: System and Humans, vol. 40, no. 2, pp. 363 – 375, 2010.
    [17] R. J. Wai, and C. C. Chu, ”Motion control of linear induction motor via Petri fuzzy neural network,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 281 – 295, 2007.
    [18] N. Q. Wu, F. Chu, S. Mammar, and M. C. Zhou, “Petri net modeling of the cooperation behavior of a driver and a copilot in an advanced driving assistance system,” IEEE Transaction on Intelligent Transportation System, vol. 12, no. 4, pp. 977 – 989, 2011.
    [19] T. MohammadPour, M. Yadollahi, and A. T. Haghighat, “HGA-PN: a new algorithm for scheduling FMS using combinational genetic algorithm and timed Petri net,” International Conference on Computer and Simulation, vol. 3, pp. 15 – 18, 2010.
    [20] C. H. Kuo and T. S. Chen, “PN-WSNA: an approach for reconfigurable cognitive sensor network implementations,” IEEE Transactions on Sensors, vol. 11, no. 2, pp. 319 – 334, 2011.
    [21] C. H. Kuo and T. S Chen, “Controllable Petri net-based implementation approach for motor control systems,” IEEE Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4599 – 4612, 2013.
    [22] FIRA information. [Online]. Available: http://www.fira.net/ [Access data: 2013/07/17]
    [23] R. C. Luo, P. K.Wang, Y. F. Tseng, and T. Y. Lin, “Navigation and mobile security system of home security robot,” IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 169 – 174, 2006.
    [24] H. C. Huang and C. C. Tsai, “FPGA implementation of an embedded robust Adaptive controller for autonomous omnidirectional mobile platform,” IEEE transactions on industrial electronics, vol. 56, no. 5, pp. 1604 – 1616, 2009.
    [25] M. Kim, S. Kim, S. Park, M. T. Choi, M. Kim, and H. Gomaa, “Service robot for the elder,” IEEE Robotics and Automation Magazine, pp. 34 – 45, 2009.
    [26] K. T. Yu, C. P. Lam, M. F. Chang, W. H. Mou, S. H. Tseng, and L. C. Fu, “An Interactive robotic walker for assisting elderly mobility in senior care unit,” IEEE Workshop on Advanced Robotic and its Social Impacts, pp. 24 – 29, 2010.
    [27] C. Y. Tsai and K. T. Song, “Face tracking interaction control of a nonholonomic mobile robot,” IEEE International Conference on Intelligent Robots and Systems, pp. 3319 – 3324, 2006.
    [28] K. Jensen, “Coloured petri nets and the invariant-method,” Theoretical Computer Science, vol. 14, pp. 317 – 336, 1981.
    [29] Y. L. Wen, C. H. Li, and M. Jeng, “A polynomial algorithm for checking diagnosability of Petri nets,” IEEE International Conference on Systems, Man, and Cybernetics, pp. 2542 – 2547, 2005.
    [30] C. G. Looney, “Fuzzy Petri nets for rule-based decisionmaking,” IEEE Transactions on Systems, Man and Cybernetics, vol. 18, no. 1, pp. 178 – 183, 1988.
    [31] Y. L. Lin, L.C. Fu, T. C. Chiang, and Y. S. Shen, “Colored timed Petri net and GA based approach to modeling and scheduling for wafer probe center,” IEEE International Conference on Robotics and Automation, pp. 1434 – 1439, 2003.
    [32] Z. Wang, Y. Li, and P. Cai, “Supervisory arc of Petri nets and its application on traffic signals control system,” International Conference on Automation Control and Artificial Intelligence, pp. 2013 – 2018, 2012.
    [33] M. M. Hanna, A. Buck, and R. Smith, “Fuzzy Petri nets with neural networks to model products quality from a CNC-milling machining centre,” IEEE transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 26, no. 5, pp. 638 – 645, 1996.
    [34] C. H. Kuo and T. S. Chen, “Modeling and control of autonomous soccer robots using high-level Petri nets,” SICE annual conference, pp. 2226 – 2231, 2010.
    [35] C. H. Kuo, C. H. Wang, and K. W. Huang, “Behavior modeling and control of 300 mm fab intrabays using distributed agent oriented Petri net,” IEEE transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 33, no. 5, pp. 641 – 648, 2003.
    [36] M. Avvenuti, P. Corsini, P. Masci, and A. Vecchio, “An application adaptation layer for wireless sensor networks,” Pervasive Mobile Computer, vol. 3, no. 4, pp. 413 – 438, 2007.
    [37] P. Levis and D. Culler, “Mate’: A tiny virtual machine for sensor networks,” International Conference on Architecture Support Programming Languages Operating System, 2002, pp. 85–95.
    [38] I. Koh and F. DiCesare, “Transformation methods for generalized Petri nets and their applications to flexible manufacturing systems,” International Conference on Computer Integrated Manufacturing, pp. 364 – 371, 1990.
    [39] S. M. Shatz, S. Tu, T. Murata, and S. Duri, “An application of Petri net reduction for Ada tasking deadlock analysis,” IEEE Transaction on Parallel Distributed System, vol. 7, no. 12, pp. 1307 – 1322, Dec. 1996.
    [40] SM-8656 solar panels product information [Online]. Available: http://us.100y.com.tw/PNoInfo/54290.htm [Access data: 2013/07/17]
    [41] AX-12 RC servo product information [Online]. Available: http://www.robotis.com/zbxe/main [Access data: 2013/07/17]
    [42] N. Q. Wu, F. Chu, C. Chu, and M. C. Zhou, “Hybrid Petri net modeling and schedulability analysis of high fusion point oil transportation under tank grouping strategy for crude oil operations in refinery,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 40, no. 2, pp. 159 – 175, 2010.
    [43] R. Lukaszewski and W. Winiecki, “Petri nets in measuring systems design,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 5, pp. 952 – 962, 2008.
    [44] K. Ogata, Modern Control Engineering, 2nd ed., Prentice-Hall International, 1990, pp. 118 – 121.
    [45] BAT mote production information [Online]. Available: http://www.bandwavetech.com/en/en_index.htm [Access data: 2013/07/17]
    [46] TI MSP 430 product information [Online]. Available: http://www.ti.com/ [Access data: 2013/07/17]
    [47] TinyOS information [Online]. Available: http://www.tinyos.net/ [Access data: 2013/07/17]
    [48] H. C. Chou, J. C. Chung, C. H. Kuo, and B. Y. Chou, “Skill-oriented humanoid robot developments for autonomous robot competitions,” World Congress on Intelligent Control Automation, pp. 330 – 335, 2011.
    [49] SPC900NC Web camera product information. [Online]. Available: http://www.p4c.philips.com/cgi-bin/dcbint/cpindex.pl?ctn=SPC900NC/00&scy=gb&slg=en [Access data: 2013/07/17]
    [50] Robotis servo motor product information. [Online]. Available: http://www.robotis.com/xe/ [Access data: 2013/07/17]
    [51] Pico-820 single-board computer product information. [Online]. Available: http://www.axiomtek.com.tw [Access data: 2013/07/17]
    [52] dsPIC33F Family product Information. [Online]. Available:
    http://www.microchip.com/ [Access data: 2013/07/17]
    [53] Toshiba TA8429H product Information. [Online]. Available:
    http://www.datasheetcatalog.org/datasheet/toshiba/4045.pdf [Access data: 2013/07/17]
    [54] IG-22GM DC gear motor product Information. [Online]. Available:
    http://www.shayye.com.tw/ [Access data: 2013/07/17]

    無法下載圖示 全文公開日期 2018/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE