簡易檢索 / 詳目顯示

研究生: 李冠璋
Guan-Zhang Li
論文名稱: 反應濺鍍法製備鋅摻雜氮化鎵與鋅摻雜氮化銦鎵薄膜及其特性分析
Processing and Property Characterization of Zn-Doped GaN and Zn-Doped InGaN Thin Films Prepared by Reactive Sputtering
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 柯文政
Wen-Cheng Ke
薛人愷
Ren-Kai Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 128
中文關鍵詞: 濺鍍鋅摻雜氮化鎵鋅摻雜氮化銦鎵薄膜電特性p-n二極體
外文關鍵詞: Sputtering, p-type Zn-doped GaN, p-type Zn-doped InGaN, Thin films, Electrical property, p-n juntion
相關次數: 點閱:223下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究成功的以RF反應式濺鍍法來製備p型Zn摻雜GaN以及Zn摻雜InGaN薄膜。實驗所需要的濺鍍靶材是將不同比例的金屬In、Ga、Zn與GaN陶瓷粉末進行混合後熱壓而成的陶金靶,製備出p型Zn摻雜的GaN以及InGaN薄膜,也成功的將Zn摻雜GaN及Zn摻雜InGaN薄膜沉積在n型Si基板上堆疊製作成p-n二極體觀察其電特性。在本實驗中,我們利用SEM、EDS、XRD、AFM、UV與霍爾效應量測儀等儀器來分析薄膜特性,所以本論文的研究主要可以分成四個部分。
第一部分是利用RF反應式濺鍍法在Si基板上製備Zn-x GaN薄膜 (x = 0、0.05、0.10與0.15),使用自製的Zn + Ga + GaN 陶金靶材,於濺鍍時固定氬氣與氮氣的流量且設定沉積溫度為200 oC,觀察Zn含量的改變對薄膜特性的影響。從XRD分析中可知Zn-x GaN薄膜沿著( )結晶平面成長,為纖維鋅礦結構。從霍爾效應量測結果可以得知當x = 0.1時,薄膜不需要經過退火程序即可從n型轉變為p型半導體薄膜,電洞濃度為4.7  1017 cm-3,載子遷移率為5.7 cm2∙V-1∙s-1。從UV吸收光譜計算Zn-x GaN薄膜,當x從0增加至0.15時,薄膜能隙則從3.08 eV下降至2.90 eV。
第二部分為利用RF反應式濺鍍法在Si基板上製備Zn-x InGaN薄膜 (x = 0.05、0.1與0.15),使用靶材為Zn + In + Ga + GaN陶金靶,沉積溫度為200 oC,並在濺鍍時固定氬氣與氮氣的流量,觀察Zn含量的改變對Zn-x InGaN薄膜特性的影響。XRD分析顯示Zn-x InGaN薄膜沿著( )結晶平面成長,為纖維鋅礦結構。從霍爾效應量測結果可以得知當x = 0.1時,薄膜則從n型轉變為p型半導體薄膜,電洞濃度為8.11017 cm-3,載子遷移率為10.4 cm2∙V-1∙s-1。利用UV吸收光譜計算Zn-x InGaN薄膜的能隙,當x從0.05增加至0.15時,薄膜能隙則從2.86 eV下降至2.7 eV。
第三部份為利用RF反應式濺鍍法將Zn-x GaN薄膜沉積在n型Si基板上製備成異質接面二極體,並比較Zn-x GaN (x = 0.05、0.1、0.15)二極體之電性,從結果可知Zn-x GaN (x = 0.05)之薄膜並不是p型GaN薄膜,而另外兩者Zn-x GaN (x = 0.1與0.15)薄膜之二極體的啟動電壓(turn-on voltage)分別為2.3與2.0 V,而在–1 V的漏電流(Leakage Current) 則分別為2.3  10-10與7.6  10-10 A,且其崩潰電壓(breakdown voltage)分別為 -20與 -13.2 V;其中,Zn-0.1 GaN之p-n二極體具有較良好的整流作用,我們更進一步探討在不同工作溫度下,會如何影響Zn-0.1 GaN二極體元件的熱穩定性與電性。我們發現Zn-0.1 GaN二極體之理想因子會從室溫25 oC下的3.3下降到150 oC下的2.5;而能障值會從25 oC下的0.91 eV下降到150 oC下的0.72 eV。
第四部份為利用RF反應式濺鍍法將Zn-x InGaN薄膜沉積在n型Si基板上製備成異質接面二極體,並比較Zn-x InGaN (x = 0.05、0.1、0.15)二極體之電性,從結果可知Zn-x InGaN (x = 0.05)之薄膜並不是p型GaN薄膜,而另外兩者Zn-x InGaN (x = 0.1與0.15)薄膜之二極體的啟動電壓(turn-on voltage)分別為1.8與1.6 V,而在–1 V的漏電流(Leakage Current) 則分別為1.9  10-6 A與3.0  10-6 A,且其崩潰電壓(breakdown voltage)均大於 -15 V;Zn-0.1 InGaN與Zn-0.15 InGaN薄膜所製作之p-n二極體的室溫下之理想因子分別為2.5與2.3,其能障值分別為0.68與0.67 eV。


In this research, we successfully deposited p-type Zn-doped GaN and InGaN (Zn-GaN and Zn-InGaN) films by RF sputtering with single cermet targets. The targets were made by hot pressing the powder mixture of metallic Ga, Zn, and In and ceramic GaN. In addition, we had added Zn into the GaN and InGaN cermet targets and successfully deposited p-type GaN and InGaN films by RF sputtering. All the thin films were analysised by EDS, SEM, AFM, XRD, Hall Effect measurement, and UV. This study was divided into four parts.
The first part is about Zn-x GaN films (x = 0, 0.05, 0.1, and 0.15). The Zn-x GaN films were deposited on Si (100) substrate by RF sputtering with single (Zn + Ga + GaN) cermet target in an Ar/N2 atmosphere. The cermet targets were made by hot pressing. The deposition temperature was 200 oC. The Zn-GaN films had a wurtzite structure with a preferential ( ) growth plane. As x value of the Zn-x GaN increased to 0.1, the film was directly transformed into p–type conduction without a post-annealing process. It had high hole concentration of 4.7  1017 cm-3 and carrier mobility of 5.7 cm2V-1s-1. The energy bandgap of Zn-x GaN films decreased from 3.08 to 2.90 eV, as x value increased from 0 to 0.15.
The second part is about Zn-x InGaN films (x = 0.05, 0.1 and 0.15). The Zn-x InGaN films were also deposited on Si (100) substrate by RF sputtering with single (Zn + In + Ga + GaN) cermet target in an Ar/N2 atmosphere. The cermet targets with a constant 5 % Indium content were made by hot pressing. The deposition temperature was 200 oC. The Zn-x InGaN films had a wurtzite structure with a preferential ( ) growth plane. With increasing Zn content, the 2 peak position gradually shifted to lower angle. As x value of the Zn-x InGaN increased to 0.1, the film was transformed into p–type conduction. It had high carrier concentration of 8.11017 cm-3 and electrical mobility of 10.4 cm2V-1s-1. The energy bandgap of Zn-x InGaN films decreased from 2.86 to 2.7 eV, as x value increased from 0.05 to 0.15.
The third part is about Zn-x GaN p-n diode. The p-n diode was made on n-type Si substrate by RF sputtering. The current-voltage (I-V) curves of the p-n diode were measured at room temperature. The I-V curve exhibited exllent rectifying behavior. Under the forward bias, the turn-on voltages of Zn-0.1 GaN/Si and Zn-0.15 GaN/Si p-n iuntion diodes were found to be ~2.3 and 2.0 V, respectively. The leakage currents of Zn-0.1 GaN/Si and Zn-0.15 GaN/Si diodes were found to be 2.3  10-10 and 7.6  10-10 A under the reverse bias of -1 V. The breakdown voltages of Zn-0.1 GaN/Si and Zn-0.15 GaN/Si diodes were found to be above - 20 and ~ - 13.2 V, respectively. We also calculated the ideality factors and the barrier heights of Zn-0.1 GaN/Si p-n diode at different temperatures. The ideality factor n decreased from 3.3 at 25 oC to 2.5 at 150 oC, and the barrier height decreased from 0.91 eV at 25 oC to 0.72 eV at 150 oC.
The fourth part is about Zn-x InGaN p-n diode. The p-n diode was made on n-type Si substrate by RF sputtering. The current-voltage (I-V) curves of the p-n diode were measured at room temperature. The I-V curve exhibited exllent rectifying behavior. Under the forward bias, the turn-on voltages of Zn-0.1 InGaN/Si and Zn-0.15 InGaN/Si p-n iuntion diodes were found to be ~1.8 and 1.6 V, respectively. The leakage currents of Zn-0.1 GaN/Si and Zn-0.15 GaN/Si diodes were found to be 1.9  10-6 A and 3.0  10-6 A under the reverse bias of -1 V. The breakdown voltages of Zn-0.1 InGaN/Si and Zn-0.15 InGaN/Si diodes both were found to be over -15 V, respectively. We also calculated the ideality factors and the barrier heights. The ideality factors of Zn-0.1 InGaN/Si and Zn-0.15 InGaN/Si p-n diode were found to be 2.5 and 2.3. The barrier heights of Zn-0.1 InGaN/Si and Zn-0.15 InGaN/Si p-n diode were found to be 0.68 and 0.67 eV.

目錄 摘要 I Abstract IV 誌謝 VII 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 5 第二章 文獻回顧與原理 8 2.1 氮化鎵 (Gallium nitride, GaN)介紹 8 2.2 氮化銦與氮化銦鎵 (Indium Nitride, InN, and Indium gallium nitride, InGaN)介紹[41] 15 2.3 摻雜鋅之氮化鎵(Zinc doped gallium nitride, Zn-doped GaN) 介紹 23 第三章 實驗方法與步驟 31 3.1 實驗材料及規格 31 3.2 實驗儀器說明 32 3.2.1 RF反應式濺鍍系統 32 3.2.2 超音波震盪機 33 3.2.3 高溫真空管型爐系統 34 3.2.4 真空熱壓機 34 3.3 實驗步驟 35 3.3.1 粉末製備 35 3.3.2 靶材粉末配置 36 3.3.3 熱壓靶材 37 3.3.4 基板裁切與清洗 38 3.3.5 薄膜濺鍍 39 3.3.6 製備元件 41 3.3.7 薄膜特性量測 43 3.4 分析儀器介紹及量測參數 44 3.4.1 高功率X光繞射儀 (High Power X-Ray Diffractometry, XRD) 44 3.4.2 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopye, FESEM) 46 3.4.3 原子力顯微鏡 (Atomic Force Microscopye, AFM) 47 3.4.4 霍爾效應量測系統 (Hall Effect Measurement System) 48 3.4.5 紫外光、可見光/近紅外光分析儀(UV-Vis/NIR spectrophotometer, UV-Vis) 49 3.4.6 半導體元件分析儀 (Semiconductor Device Parameter Analyzer) 50 第四章 結果與討論 51 4.1 不同Zn摻雜量之Zn-x GaN薄膜特性分析及探討 52 4.1.1 不同Zn摻雜量之Zn-x GaN薄膜成分分析 52 4.1.2 不同Zn摻雜量之Zn-x GaN薄膜SEM分析 55 4.1.3 不同Zn摻雜量之Zn-x GaN薄膜AFM分析 58 4.1.4 不同Zn摻雜量之Zn-x GaN薄膜XRD分析 61 4.1.5 不同Zn摻雜量之Zn-x GaN薄膜之霍爾效應電性量測 64 4.1.6 不同Zn摻雜量之Zn-x GaN薄膜光學性質分析 67 4.2 不同Zn摻雜量之Zn-x InGaN薄膜特性分析及探討 70 4.2.1 不同Zn摻雜量之Zn-x InGaN薄膜成分分析 70 4.2.2 不同Zn摻雜量之Zn-x InGaN薄膜SEM分析 74 4.2.3 不同Zn摻雜量之Zn-x InGaN薄膜AFM分析 77 4.2.4 不同Zn摻雜量之Zn-x InGaN薄膜XRD分析 80 4.2.5 不同Zn摻雜量之Zn-x InGaN薄膜之霍爾效應電性量測 83 4.2.6 不同Zn摻雜量之Zn-x InGaN薄膜光學性質分析 86 4.3 Zn-GaN之二極體電性分析及探討 88 4.3.1 Zn-x GaN之二極體電性分析 88 4.3.2 Zn-0.1 GaN之p-n二極體元件之熱穩定性與電性分析 92 4.4 Zn-InGaN之二極體電性分析及探討 94 4.4.1 Zn-x InGaN之二極體電性分析 94 第五章 結論 97 參考文獻 104

[1] Nick Holonyak Jr., S. F. Bevacqua, Appl. Phys. Lett. 1 (1962) 82–83.
[2] S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Jpn. J. Appl. Phys. 31 (1992) 139–142.
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku,Y. Sugimoto, Jpn. J. Appl. Phys. 35 (1996) 74–76.
[4] 郭浩中、賴芳儀、郭守義著,【LED原理與應用】,五南圖書出版公司,2009年
[5] S. C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, J. Appl. Phys. 87 (2000) 965–1006.
[6] S. Nakamura, T. Mukai, and M. Senoh, J. Appl. Phys. 76, (1994) 8189-8191.
[7] S. Nakamura, M. Senoh, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys. 35, (1996) L217-L220.
[8] I. Daumiller, C. Kirchner, M. Kamp, K. J. Ebeling, E. Kohn, IEEE Electron Dev. Lett. 20 (1999) 448–450.
[9] S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich, A. E. Wickenden, Solid-State Electron. 41 (1997) 177–180.
[10] H. Morkoç, A. D. Carlo, and R. Cingolani, Solid-State Electron. 46 (2002) 157–202.
[11] B. Jacobs, M. C. J. C. M. Kramer, E. J. Geluk, F. Karouta, J. Cryst. Growth 241 (2002) 15–18.
[12] P. M. Asbeck, E. T. Yu, S. S. Lau, W. Sun, X. Dang, C. Shi, Solid-State Electron. 44 (2000) 211–219.
[13] B. F. Chu-Kung, M. Feng, G. Walter, N. Holonyak Jr., T. Chung, J. H. Ryou, J. Limb, D. Yoo, S. C. Shen, R. D. Dupuis, D. Keogh, P. M. Asbeck, Appl. Phys. Lett. 89 (2006) 082108.
[14] J. T. Torvik, J. I. Pankove, B. V. Zeghbroeck, Solid-State Electron. 44 (2000) 1229–1233.
[15] K. Kumakura, T. Makimoto, Appl. Phys. Lett. 92 (2008) 093504.
[16] U. K. Mishra, P. Parikh, Y. F. Wu, Proc. IEEE 90 (2002) 1022–1031.
[17] X. L. Wang, C. M. Wang, G. X. Hu, J. X. Wang, T. S. Chen, G. Jiao, J. P. Li, Y. P. Zeng, J. M. Li, Solid-State Electron. 49 (2005) 1387–1390.
[18] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, N. Hara, IEEE Electron Dev. Lett. 31 (2010) 189–191.
[19] C. S. Gallinat, G. Koblmüller, J. S. Brown, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, M. Wraback, Appl. Phys. Lett. 89 (2006) 032109.
[20] T. Inushima, M. Higashiwaki, T. Matsui, Phys. Rev. B 68 (2003) 235204.
[21] G. Shikata, S. Hirano, T. Inoue, M. Orihara, Y. Hijikata, H. Yaguchi, S. Yoshida, J. Cryst. Growth 301–302 (2007) 517–520.
[22] H. Yamashita, K. Fukui, S. Misawa, S. Yoshida, J. Appl. Phys. 50 (1979) 896–898.
[23] W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, S. L. Gilbert, J. Appl. Phys. 44 (1973) 292–296.
[24] 呂彥興,【氧化鋅鎵薄膜成長在氮化鎵發光二極體上之應用】,國立成功大學碩士論文,民國96年7月。
[25] H. W. Kim, N. H. Kim, Appl. Surf. Sci. 236 (2004) 192–197.
[26] Z. X. Zhang, X. J. Pan, T. Wang, E. Q. Xie, L. Jia, J. Alloys Compd. 467 (2009) 61–64.
[27] Q. Guo, Y. Kusunoki, Y. Ding, T. Tanaka, M. Nishio, Jpn. J. Appl. Phys. 49 (2010) 081203.
[28] W. C. Johnson, J. B. Parson, M. C. Crew, J. Phys. Chem. 36 (1932) 2651–2654.
[29] H. P. Maruska, J. J. Tietjen, Appl. Phys. Lett. 15 (1969) 327–329.
[30] Strategies Unlimited, Gallium Nitride-Technology Status and Applications Analysis, Strategies Unlimited (1997).
[31] Rüdiger Quay, Gallium Nitride Electronics, Springer (2008) pp. 4.
[32] S. Yoshida, S. Misawa, S. Gonda, Appl. Phys. Lett. 42 (1983) 427–429.
[33] 蔡妙嬋,【氮化銦鎵藍光發光二極體極化效應之研究】,國立彰化師範大學碩士論文,民國97年6月。
[34] T. Takayama, M. Yuri, K. Itoh, J. S. Harris, Jr., Appl. Phus. Lett. 90 (2001) 2358–2369.
[35] 賴彥霖,【氮化銦鎵(類量子點)氮化鎵多重量子井之微結構與光學性質之研究】,國立成功大學博士論文,民國95年12月。
[36] M. Razeghi, M. Henini, Optoelectronic Devices III-Nitrides, Kidlington, Oxford Elsevier Ltd (2004) pp. 3.
[37] J. Piprek, Nitride Semiconductor Devices Principles and Simulation, Weinheim WILEY-VCH Verlag GmbH & Co. KGaA (2007) pp. 7.
[38] I. Vurgaftman, J. R. Meyer, J. Appl. Phys. 94 (2003) 3675–3696.
[39] M. Higashiwaki, T. Matsui, J. Cryst. Growth 269 (2004) 162–166.
[40] H. Shinoda , N. Mutsukura, Thin Solid Films 516 (2008) 2837–2842.
[41] S. Strite, H. Morkoc, J. Vac. Sci. Technol. B10 (1992) 1237-1266
[42] R. Juza, H. Hahn, Z. Anorg. Allg. Chem. 239 (1938) 282–287.
[43] K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys. 46 (1975) 3432-3437.
[44] T. L. Tansley, C. P. Foley. J. Appl. Phys. 59 (1986) 3241-3244.
[45] A. Wakahara and A. Yoshida, Appl. Phys. Lett. 54 (1989) 709-711.
[46] J. B. MacChesney, P. M. Bridenbaugh, and P. B. O'Connor, Mater, Res. Bull. 5 (1970) 783-792.
[47] J. W. Trainor and K. Rose, J. Electron. Mater. 3 (1974) 821-828.
[48] A. Yamamoto, Y. Murakami, K. Koide, M. Adachi, and A. Hashimoto, Phys. Status Solid B 228 (2001) 5-8.
[49] V. W. L. Chin, T. L. Tansley, T. Osotchan, J. Appl. Phys. 75 (1994) 7365–7372.
[50] N. Saitoa, Y. Igasaki, Appl. Surf. Sci. 169–170 (2001) 349–352.
[51] T. L. Tansley, C. P. Foley, Electron. Lett. 20 (1984) 1066–1068.
[52] D. H. Kuo, C. H. Shih, Appl. Phys. Lett. 93 (2008) 164105.
[53] S. Inoue, T. Namazu, T. Suda, K. Koterazawa, Vacuum 74 (2004) 443–448.
[54] V. A. Tyagai, A. M. Evstigneev, A. N. Krasiko, A. F. Andreeva, and V. Y. Malakhov, Sov. Phys. Semicond. 11 (1977) 1257-1259.
[55] T. L. Tansley and C. P. Foley, J. Appl. Phys. 60 (1986) 2092-2095.
[56] R. Dahal, B. Pantha, J. Li, J. Y. Lin, H. X. Jiang, Appl. Phus. Lett. 94 (2009) 063505.
[57] R. Singh, D. Doppalapudi, and T. D. Moustakas, Appl. Phys. Lett. 70 (1997) 1089-1091.
[58] N. Yoshimoto, T. Matsuoka, T.Sasaki, and A. Katsui, Appl. Phys. Lett. 59 (1991) 2251-2253.
[59] Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, phys. stat. sol. (b) 216 (1999) 167-170.
[60] O. Tuna, W. M. Linhart, E. V. Lutsenko, M. V. Rzheutski, G. P. Yablonskii, T. D. Veal, C. F. McConville, C. Giesen, H. Kalisch, A. Vescan, M. Heuken, J. Cryst. Growth 358 (2012) 51–56.
[61] J. I. Pankove, J. Lumin. 7 (1973) 114-126.
[62] H. G. Grimmeiss and H. Koelmans, Z. Naturforsch, 14a (1959) 264-271.
[63] H. G. Grimmeiss, R. Groth and J. Maak, Z. Naturforsch, 15a (1960) 799-806.
[64] J. I. Pankove, E. A. Miller, D. Richman and J. E. Berkeyheiser. J. Lumin. 4 (1971) 63-66.
[65] H. Amano, K. Hiramatsu, M. Kito, N. Sawaki and I. Akasaki, J. Cryst. Growth 93 (1988) 79-82.
[66] H. Amano, N. Sawaki, and Y. Toyoda, Appl. Phys. Lett. 48 (1986) 353-355.
[67] H. Amano, I. Akasaki, K. Hiramatsu, N. Koide and N. Delhi, Thin Solid Film 163 (1988) 415-420.
[68] 徐妙枝,同電子性銦摻雜對P型氮化鎵薄膜之影響,碩士論文,交通大學,電子物理系 (2001)。
[69] S. N. Mohammad, A. E. Botchkarev, A. Salvador, W. Kim, O. Aktas, H. Morkoc, Philos. Magn. B 76 (1997) 131-143.
[70] J. Neugebauer, C. G. Van de Walle, Mater. Res. Soc. Symp. Proc. 395 (1996) 645-656.
[71] H. Nakayama, P. Hacke, M. R. H. Khan, T. Detchprohm, K. Hiramatsu, N. Sawaki, Jpn. J. Appl. Phys. 35 (1996) L282-L284.
[72] J. I. Pankove and J. A. Hutchby, Appl. Phys. Lett. 24 (1974) 281-282.
[73] G. Jacob, M. Boulou and M. Furtado, J. Cryst. Growth 42 (1977) 136-143.
[74] P. Bergman, G. Ying, B. Monemar amd P. O. Holtz, J. Appl. Phys. 61 (1987) 4589-4592.
[75] S. Nakamura, J. Cryst. Growth 145 (1994) 911-917.
[76] S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J. C. Tedenac, J. Alloys Compd. 462 (2008) 335–339.
[77] S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34 (2012) 1946–1953.
[78] S. Strite, H. Morkoç, J. Vac. Sci. Technol. B 10 (1992) 1237–1266.
[79] K. Wang, R. R. Reeber, Appl. Phys. Lett. 79 (2011) 1602–1604.
[80] F-R. Ding, W-H. He, A. Vantomme, Q. Zhao, B. Pipeleers, K. Jacobs, I. Moerman, Mater. Sci. Semicond. Process 5 (2003) 511-514.
[81] J. E. Northrupa, L. T. Romano, J. Neugebauer, Appl. Phys. Lett. 74 (1999) 2319–2321.
[82] D. O. Demchenko and M. A. Reshchikov, Physical Review B 88, (2013) 115204.
[83] P. Perlin, T. Suski, H. Teisseyre, M. Leszcznski, I. Grzegory, J. Jun, S. Porowski, P. Bogusławski, J. Bernholc, J. C. Chervin, A. Polian, T. D. Moustakas, Phys. Rev. Lett. 75 (1995) 296–299.
[84] P. Bogusławski, E. L. Briggs, J. Bernholc, Phys. Rev. B 51 (1995) 17255–17258.
[85] I. Gorczyca, A. Svane, N. E. Christensen, Solid State Commun. 101 (1997) 747–752.
[86] C. R. Lee, K. W. Seol, J. M. Yeon, D. K. Choi, H. K. Ahn, J. Cryst. Growth 222 (2001) 459–464.
[87] R. K. Gupta, F. Yakuphanoglu, K. Ghosh, P. K. Kahol, Microelectron. Eng. 88 (2011) 3067–3069.
[88] M. L. Lee, J. K. Sheu, L. S. Yeh, M. S. Tsai, C. J. Kao, C. J. Tun, S. J. Chang, G. C. Chi, Solid-State Electron. 46 (2002) 2179–2183.

QR CODE