簡易檢索 / 詳目顯示

研究生: 陳彥名
Yen-ming Chen
論文名稱: 大角度離子佈植之薄膜電晶體汲極區域之研究
Study of poly-Si thin-film-transistors with large angle tilt implanted drain region
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 張勝良
Sheng-Lyang Jang
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 78
中文關鍵詞: 大角度離子佈植薄膜電晶體間隙壁後離子佈植
外文關鍵詞: LATID, poly-si, TFT
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,複晶矽薄膜電晶體(Poly-Si TFTs)已經廣泛的被應用在不同的產品上,例如:靜態隨機處理記憶體(SRAMs)、光偵測放大器、掃描器、主動式矩陣液晶顯示器(AMLCDs)等,原因在於複晶矽薄膜電晶體比非晶矽薄膜電晶體具有較高的電子移動率(field effect mobility),進而增進了同時將主動矩陣及周邊驅動電路整合在同一基板上的能力。然而,傳統的自我對準(self-aligned)複晶矽薄膜電晶體在電特性上卻存在了幾個不欲發生的效應,包括短通道效應(Short-channel effect)、閘極引起汲極漏電流效應(gate-induced drain leakage, GIDL)、汲極引發位障降低效應(drain-induced barrier lowering, DIBL)、扭結效應(kink effect)和熱載子效應(Hot-carrier effect),都會造成電性操作上的不穩定性。這些效應主要是靠近汲極端的大電場所引起。因此,必須降低該電場以改善上述的現象。為了改善元件特性及簡化製程,此論文透過元件結構的改變以及相關參數模擬分析來實踐獲得高性能的薄膜電晶體。
    我們將分析具有四種不同汲極結構的薄膜電晶體,包含傳統型薄膜電晶體、輕摻雜型薄膜電晶體(LDD)、大角度離子佈植薄膜電晶體(LATID)以及間隙壁後大角度離子佈植薄膜電晶體(LATIAS)。當通道長度為1.0 μm時,LATID元件因為雜質侵入通道較多,產生了汲極與源極間的貫穿效應。然而,LATID結構藉著較平緩的濃度分佈,能夠降低電場的大小。我們可以藉由通道摻雜的方式來搭配LATID元件,在不增加電場的情形下,抑制住貫穿效應。因此,在元件尺寸為1.0 μm時,LATID結構搭配通道摻雜,比起傳統型薄膜電晶體以及輕摻雜型薄膜電晶體,有著較小的漏電流。
    當我們將通道長度進一步的微縮到0.5 μm時,LATID結構產生了非常嚴重的貫穿效應,即使這時使用通道摻雜,仍然沒有太好的改善。藉由間隙壁後大角度離子佈植的方式,有效地減輕了雜質侵入通道過深的問題。因此,元件在0.5 μm時,LATIAS的結構可以產生比傳統型薄膜電晶體以及輕摻雜型薄膜電晶體更小的漏電流。


    Polycrystalline silicon thin-film-transistors (Poly-Si TFTs) have been widely used in various applications, such as static random memories (SRAMs), photodetector amplifier, scanner, and active matrix liquid crystal displays (AMLCDs). The electron field mobility of the ploy-Si TFT is larger than that of the amorphous-Si (a-Si) TFT, allowing the integration of both active matrix and driving circuitry on the same substrate. However, the conventional self-aligned poly-si TFT induces several undesired effects in the electrical characteristics, including short-channel effect、GIDL、DIBL、kink effect and hot-carrier effect. These effects are related to the presence of high electric fields at the drain junction. Hence, the relief of the electric field near the drain region is essential. In this study, in order to improve the electrical properties of devices and process simplification, the design of new device structure and the analysis of device relative parameters are carried out via process and device simulation.
    Four types of TFTs with different drain structures have been examined, including the conventional single source/drain TFT, the lightly-doped- drain (LDD) TFT, the large-angle-tilt-implantation-drain (LATID) TFT, and the large-angle-tilt-implantation-after-spacer (LATIAS) TFT. For a channel length of 1.0 μm, the LATID TFT devices may suffer from source/drain punch-through, due to encroachment of dopant into the channel region. However, the LATID structure can help to reduce the electric field due to a gradual dopant distribution. Accordingly, for the TFT devices with LATID structure, a proper channel doping may be employed to suppress the punch-through without considerably enhancing the electric field near the drain region. As a result, for a channel length of 1.0 μm, the LATID TFT devices with channel doping may cause a much smaller off-state leakage current than the LDD TFT and the concentional TFT devices.
    On the other hand, while the device is further scaled down to 0.5 μm, the LATID TFT devices may suffer from serious source/drain punch-through. Even with the usage of channel doping, the off-state leakage is still large. By using an oxide spacer prior to LATID implantation, the dopant encroachment into the channel region may be reduced. As a result, for a channel length of 0.5 μm, the LATIAS TFT device may cause a relatively smaller off-state leakage current than the LDD TFT and the conventional TFT devices.

    Contents Abstract (Chinese)i Abstractiv Acknowledgement (Chinese)vii Contents………………………………………………………………...viii Figure Captions…………………………………………………………..x Chapter1 Introduction1 1-1 Application of Poly-Si TFTs1 1-2 Background2 1-3 Electrical Characteristics of Poly-Si TFTs5 1-4 Different engineering structure of drain area7 1-5 Motivation9 1-6 Thesis Organization10 Chapter2 Device scheme14 2-1 Conventional poly-Si TFT14 2-2 LDD poly-Si TFT15 2-2 LATID & LATIAS poly-Si TFT16 Chapter3 Results and Discussion28 3-1 Device scale down from 5μm to 1μm28 3-1-2 Influence of LATID implantation dose & channel doping concentration32 3-1-3 Summary33 3-2 Device scale down from 5μm to 0.5μm44 3-2-1 Analysis of electrical characteristics44 3-2-2 Influence of LATIAS implantation dose, implantation tilt angle, and channel doping concentration48 3-2-3 Summary49 Chapter4 Conclusions68 References69

    [1].Y. Matsueda, T. Ozawa, M. Kimura, T. Itoh, K. Kitwada, T. Nakazawa, and H. Ohsima, “A 6-bit-color VGA low-temperature poly-Si TFT-LCD with integrated digital data drivers,” SID Tech. Dig., pp. 879-882, 1998.
    [2].Lee, S.-J.ab , Lee, S.-W.a, Oh, K.-M.a, Park, S.-J.a, Lee, K.-E.a, Yoo, Y.-S.a, Lim, K.-M.a, Yang, M.-S.a, Yang, Y.-S.c , Hwang, Y.-K., ”A novel five-photomask low-temperature polycrystalline silicon CMOS structure for AMLCD application,” IEEE Trans. Electron Devices, Vol. 57, pp. 2324-2329, 2010.
    [3].H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., pp.157, 1989.
    [4].M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, Vol. 48, pp. 845-851, 2001.
    [5].M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Prache, “Polysilicon VGA active matrix OLED displays – technology and performance,” IEDM Tech. Dig., pp. 871-874, 1998.
    [6].Hsieh, H.-H., Lu, H.-H., Chang, C.-Y., Tsai, T.-T., Huang, J.-Y., Ting, H.-C., Hsu, S.-F., Wu, Y.-C., Chuang, C.-S., Chen, C.-Y., Chang, L.-H., Lin, Y., “Next generation TFT technology for AMOLED,” Proceedings of International Meeting on Information Display, pp.386-387, 2010.
    [7].Arai, T., “Oxide-TFT technologies for next-generation AMOLED displays,” Journal of the Society for Information Display, vol. 20, pp.156-161, 2012.
    [8].Lin, C.-L.a , Chang, W.-Y.b, Hung, C.-C.b, Tu, C.-D., “LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display,” IEEE Electron Device Letters, vol. 33, pp.700-702, 2012.
    [9].H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992.
    [10].T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313, 1995.
    [11].S. Koyama, “A novel cell structure for giga-bit EPROMs and flash memories using polysilicon thin film transistors,” IEEE VLSI Tech. Dig., pp. 44-45, 1992.
    [12].A. Sato, Y. Momiyama, Y. Nara, T. Sugii, Y. Arimoto, T. Ito, “A 0.5-μm EEPROM cell using poly-Si TFT technology,” IEEE Trans. Electron Devices, Vol.40, p. 2126, 1993.
    [13].Y. Matsueda, T. Shimobayashi, N. Okamoto, I. Yudasaka, H. Ohshima, “4.55-in. HDTV poly-Si TFT light valve for LCD projectors,” IEEE Display Research Conf., pp. 8-11, 1991.
    [14].J. A. Rowlands, “Current advances and future trends in X-ray digital detectors for medical applications,” IEEE trans. Instrumentation and Measuremen, Vol. 47, No. 6, pp. 1415-1418, 1998.
    [15].T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi Integrated Contact Type Linear Image Sensors with Poly-Si TFT’s Analog Readout Circuits and Dynamic Shift Registers,” IEEE Trans. Electron Devices, Vol.38, No.5, pp. 1086-1039, 1991.
    [16].Y. Hayashi, H. Hayashi, M. Negishi and T. Matsushita, “A Thermal Printer Head with CMOS Thin-Film Transistors and Heating Elements Integrated on a Chip,” IEEE Solid-State Circuits Conference, pp.266, 1998.
    [17].N. Yamauchi, Y. Inaba and M.Okamura, “An integrated photodetector-amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonics Tech. Lett., Vol. 5, No. 3, 1993.
    [18].M. G. Clark, “Current status and future prospects of poly-Si devices,” IEE Proc. Circuits Device Syst., Vol. 141, No. 1, 1994.
    [19].K. Banerjee, S. J. Souri, P. Kapur, and Krishna C. Saraswat, “3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration,” Proceedings of the IEEE, Vol. 89, pp. 602-633, 2001.
    [20].Y. Akasaka, “ Three-Dimensional IC trends,” Proceedings of the IEEE, Vol.74, No. 12, pp. 1703-1714, December 1986.
    [21].I-W. Wu, “Cell design considerations for high-aperture-ratio direct-view and projection polysilicon TFT-LCDs,” SID Tech. Dig., pp. 19-22, 1995.
    [22].Ong, S.N.ab , Yeo, K.S.a, Chew, K.W.J.ab, Chan, L.H.K.a, Loo, X.S.ab, Boon, C.C.a, Do, M.A., “Impact of velocity saturation and hot carrier effects on channel thermal noise model of deep sub-micron MOSFETs,” Solid-State Electronics, vol. 72, pp.8-11, 2012.
    [23].I.W. Wu, A. G. Lewis, T.Y. Huang, W.B. Jackson, and A. Chiang, “Mechanism and device-to-device variation of leakage current in polysilicon thin film transistors,” IEDM Tech. Dig., pp. 867-870, 1990.
    [24].K. R. Olasupo, and M. K. Hatalis, “Leakage current mechanism in sub- micron polysilicon thin- film transistors,” IEEE Trans. Electron Devices, Vol. 43, pp. 1218-1223, 1996.
    [25].M. Lack, I-W. Wu, T. J. King, and A. G. Lewis, “Analysis of leakage currents in poly-silicon thin film transistors,” IEDM Tech. Dig., pp. 385-388, 1993.
    [26].J. G. Fossum, Adelmo Ortiz-conde, H. Shichijo, and S. K. Banerjee, “Anomalous Leakage Current in LPCVD Polysilicon MOSFET’s,” IEEE Trans. Electron Devices, Vol. 32, No. 9, pp. 1878-1884, 1985.
    [27].M. Yazaki, S. Takenaka, and H. Ohshima, “Conduction Mechanism of Leakage Current Observed in Metal-Oxide- Semiconductor Transistors and Poly-Si Thin Film Transistors,” Jpn. J. Appl. Phys., Vol. 31, pp. 206-209, 1992.
    [28].B. Rezek, C. E. Nebel, and M. Stutzmann, “Polycrystalline silicon thin films produced by interference laser crystallization of amorphous silicon,” Jpn. J. Appl. Phys., Part 2, Vol. 38, pp. L1083-L1084, 1999.
    [29].P. M. Smith, P. G. Carey, and T. W. Sigmon, “Excimer laser crystallization and doping of silicon films on plastic substrates,” Appl. Phys. Lett., Vol. 70, pp. 342-344, 1997.
    [30].J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved on excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett., Vol. 63, pp. 1969-1971, 1993.
    [31].Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-temperature crystallization of hydrogenated amorphous silicon induced by nickel silicide formation,” Jpn. J. Appl. Phys. Part1, Vol. 29, pp. 2698-2704, 1990.
    [32].B. Faughnan and A. C. Ipri, “A study of hydrogen passivation of grain boundaries in polysilicon thin-film transistors,” IEEE Tran. Electron Device, Vol.36, No.1, pp. 505-508, 1994.
    [33].C. K. Yang, T. F. Lei, and C. L. Lee, “Improved electrical characteristics of thin-film transistors fabricated on nitrogen-implanted polysilicon films,” IEDM Tech. Dig., pp. 508-508, 1994.
    [34].H.-C. Cheng, F.-S. Wang, and C.-Y. Huang, “Effects of NH3 plasma passivation on n-channel polycrystalline silicon thin-film transistors,” IEEE Tran. Electron Devices, Vol.44, No1, pp. 64-68, 1997.
    [35].K. Tanaka, H. Arai, and S. Kohda, “Characteristics of offset-structure polycrystalline silicon thin- film transistors,” IEEE Electron Device Lett., Vol. 9, pp. 23-25, 1988.
    [36].Chen, H.-F. , Guo, L.-X., “Influence of gate voltage on gate-induced drain leakage current in ultra-thin gate oxide and ultra-short channel LDD nMOSFET's,” Wuli Xuebao/Acta Physica Sinica, vol. 61, issue 2, 2012.
    [37].B.-H. Min and J. Kanicki, “Electrical characteristics of new LDD poly-Si TFT structure tolerant to process misalignment,” IEEE Electron Device Lett., Vol. 20, pp. 335-337, 1999.
    [38].Cho, J., Jung, S., Jang, K., Park, H., Heo, J., Lee, W., Gong, D., Park, S., Choi, H., Jung, H., Choi, B., Yi, J., “The effect of gate overlap lightly doped drains on low temperature poly-Si thin film transistors,” Microelectronics Reliability, vol.52, pp.137-140, 2012.
    [39].Y. Mishima and Y. Ebiko, “Improved lifetime of poly-Si TFTs with a self-aligned gate-overlapped LDD structure,” IEEE Trans. Electron Devices, Vol. 49, pp. 981-985, 2002.
    [40].M. Hatano, H. Akimoto, and T. Sakai, “A novel self-aligned gate-overlapped LDD poly-Si TFT with high reliability and performance,” IEDM Tech. Dig., pp. 523-526, 1997.
    [41].K.-Y. Choi, J.-W. Lee, and M.-K. Han, “Gate-overlapped lightly doped drain poly-Si thin- film transistors for large area-AMLCD,” IEEE Trans. Electron Devices, Vol. 45, pp. 1272-1279, 1998.
    [42].T. Kamins, Polycrystalline silicon for integrated circuits and displays, second edition, 1998.
    [43].Ted Kamins, “Polycrystalline silicon for integrated circuits and displays”, second edition.
    [44].M. Hack, and A. G. Lewis, “Avalanche-induced effects in polysilicon thin-film transistors,” IEEE Electron Device Lett., Vol. 12, pp. 203-205, 1991.
    [45].M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin- film transistors,” IEEE Trans. Electron Devices, Vol. 44, pp. 2234-2241, 1997.
    [46].M. Koyanagy, H. Kaneko, S. Shimizu, “ Optimum design of n+-n– double-diffused drain MOSFET to reduce hot-carrier emission,” IEEE Trans. Electron Devices, Vol. 32, pp. 562, 1985.
    [47].F.-C Hsu, H. R. Grinolds, “Structure-enhanced MOSFET degradation due to hot-electron injection,” IEEE Electron Device Lett., Vol. 5, No. 3, pp. 71-74, March 1984.
    [48].J. Hui, F.-C Hsu, J. Moll, “ A new substrate and gate current phenomenon in short-channel LDD and minimum overlap devices,” IEEE Electron Device Lett., Vol. 6, pp. 135, 1985.
    [49].T.Y. Huang, W.W. Yao, R.A. Martin, A.G. Lewis, M. Koyanai, J.Y. Chen, “A novel submicron LDD transistor with inverse-T gate structure,” IEDM Tech. Dig., pp. 742-745, 1986.
    [50].M.H. Juang, Y.M. Chiu, “High-performance polycrystalline-Si thin film transistors formed by using large-angle-tilt implanted drains,” Semiconductor Science and Technology, vol. 5, pp. 1223-1225, 2005.
    [51].T. Hori, K. Kurimoto, “A new MOSFET with large-tilt-angle implanted drain (LATID) structure,” IEEE Electron Device Lett., Vol.9, No.6, pp.300-302, June 1988.
    [52].T. Hori, J. Hirase, Y. Odake, T. Yasui, “Deep-submicrometer large-angle-tilt implanted drain (LATID) technology,” IEEE Trans. Electron Devices, vol. 39, No. 10, pp. 2312-2324, October 1992.
    [53].T. Hori, “0.25μm LATID (LArge-Tilt-angle Implanted Drain) technology for 3.3-V operation,” IEDM Tech. Dig., pp. 777-780, 1989.
    [54].J. Hirase, T. Hori, Y. Odake, “LATID (Large-Angle-Tilt Implanted Drain) FETs with buried n– profile for deep-submicron ULSIs,” IEICE Trans. Electron., Vol. 77-C, No. 3, March 1994.

    無法下載圖示 全文公開日期 2017/06/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE