簡易檢索 / 詳目顯示

研究生: 許奕傑
Yi-Chieh Hsu
論文名稱: 異質結構有機吸光層於可見光波段具高響應度之光感測有機薄膜電晶體開發與研究
Development of The Photo-OTFT with High Responsivity in Visible-Light-Band by Heterostructure
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 劉舜維
Shun-Wei Liu
李志堅
Chih-Chien Lee
王錫九
Shea-Jue Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 129
中文關鍵詞: 有機薄膜電晶體有機光電晶體異質結構
外文關鍵詞: Organic Thin-Film Transistor, Organic Phototransistor, Heterostructure
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將以 Pentacene 作為主動層兼吸光層搭配 SubPc、C60 作為其餘之吸光材料,
    補足能夠於全可見光波段的光吸收效果,且利用三者間造成的能階差,來提升光電參數。
    第一部分,為了要讓 SubPc、C60 兩種材料在不同鍍率下和主動層的搭配使可見光
    吸收效果能夠達到最大化,分別製作單層(SubPc、C60)、雙層(Pentacene/SubPc)、三層結
    構(Pentacene/SubPc/C60)的材料片進行 Uv-Visible 量測,並量測出 SubPc、C60 最佳鍍率
    為 0.3 Å/s 的吸收條件。
    第二部分以 Pentacene 為主動層兼吸光層搭配 SiO2閘極絕緣層為基礎上製作 SubPc
    及 C60 吸光材料,並在厚度變化下調變出 SubPC 40 nm 及 C60 20 nm 的條件下擁有最好
    的響應度、靈敏值、外部量子效率及偵測度,並以 PL 及 AFM 分析,加以佐證。
    最後為了更進一步提高光電特性,製作出有機雙閘極絕緣層 PVA / PVP,利用 PVA
    的 High-K 特性能夠提高電流值並維持住操作電壓且在上層搭配交聯後的 PVP 形成疏
    水的表面,使主動層(Pentacene)成長排列更好,藉此提高元件的載子遷移率(Mobility, µ),
    來減少光生載子的複合機率,達到光響應度為 122。


    In this research, Pentacene is used as the active layer and the light-absorbing layer. Moreover, SubPc and C60 are used as the other light-absorbing materials to meet the light absorption effect in the entire visible light band and use the energy level difference caused by the three materials to improve the optoelectronic parameters.
    First of all, in order to maximize the visible light absorption effect of the two materials (SubPc, C60) under different deposition rates with the active layer. We fabricated a single-layer (SubPc, C60), double-layer (Pentacene/SubPc), and tri-layer structure (Pentacene/SubPc/C60) were subjected to Uv-Visible measurement. The absorption conditions of the optimal rate of SubPc and C60 were measured at 0.3 Å/s.
    Secondly, pentacene is the active and light absorption layer, subjoins SubPc and C60 over the pentacene, and is based on the SiO2 gate insulating layer to make the OPT. Under the modulation of different thicknesses, SubPc 40 nm and C60 20 nm were fabricated with the best responsivity, sensitivity, external quantum efficiency, and detection, confirmed by PL and AFM analysis.
    Lastly, an organic double-gate insulating layer PVA/PVP was fabricated to improve the
    optoelectronic properties further. The high-K characteristic of PVA could be increased current and maintained the operating voltage. On the other hand, the top layer of cross-linked PVP could form a hydrophobic surface. Therefore, the active layer (Pentacene) could grow and arranges better on a hydrophobic surface, thereby increasing the carrier mobility (µ) of the device, reducing the recombination probability of photogenerated carriers, and achieving a photoresponsivity of 122.

    論文摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XV 第一章 概論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究大綱 3 第二章 有機薄膜電晶體介紹 4 2.1 有機半導體介紹 4 2.1.1 有機半導體材料介紹 5 2.1.2 有機半導體Pentacene之特性介紹 8 2.2 有機半導體之傳輸機制 9 2.2.1 載子跳躍模型機制(Hopping Model)[38-39] 10 2.2.2 陷阱補捉與熱釋放模型機制 (Multiple Trapping and Release) 11 2.2.3 偏極子模型機制 (The Polaron Model)[42] 11 2.3 有機薄膜電晶體結構 13 2.4 有機薄膜電晶體之操作模式 14 2.5 電性參數萃取方式 18 2.5.1 載子移動率(Mobility, μ) 18 2.5.2 臨界電壓(Threshold Voltage, Vth) 20 2.5.3 次臨界斜率(Subthreshold Swing, S.S.) 20 2.5.4 開關電流比(On/Off Current Ratio, Ion/Ioff) 21 2.6 有機光感測薄膜電晶體 22 2.7 光電流產生機制2 3 2.8 有機光感測薄膜電晶體評價參數 24 2.8.1 響應度(Responsivity) 24 2.8.2 靈敏度(Sensitivity) 24 2.8.3 外部量子效率(External quantum efficiency, EQE) 24 2.8.4 偵測度(Dtectivity, D*) 25 2.9 實驗量測與材料分析設備介紹 26 2.9.1 半導體參數分析儀(Semiconductor Parameter Analyze) 26 2.9.2 原子力顯微鏡(Atomic Force Microscope, AFM) 26 2.9.3 紫外光-可見光光譜儀(Ultraviolet/Visible Spectrophotometer, UV-VISIBLE) 27 2.9.4 光激發螢光頻譜(Photoluminescence, PL) 28 第三章 SubPc/C60有機吸光層最佳鍍率調變與分析 29 3.1 簡介 29 3.1.1 文獻回顧 29 3.1.2 實驗動機 30 3.2 實驗流程 31 3.3 有機吸光層於不同鍍率下UV-VISIBLE吸收特性 34 3.3.1 單層吸光層 (SubPc、C60) 34 3.3.2 雙層吸光層 (Pentacene/SubPc) 36 3.3.3 三層吸光層 (Pentacene/SubPc/C60) 38 第四章 透過調變SubPc/C60吸光層厚度製作最佳化有機光感測電晶體 43 4.1 簡介 43 4.1.1 文獻回顧 43 4.1.2 實驗動機 44 4.2 實驗流程 44 4.2.1 未搭配吸光層之元件(光)電特性 47 4.3 調變C60厚度之實驗與分析 52 4.3.1 不同C60厚度之元件電特性分析 52 4.3.2 不同C60厚度之元件光電特性分析 57 4.3.3 不同C60厚度之材料分析 63 4.4 調變SubPc厚度最佳化參數 67 4.4.1 不同SubPc厚度之元件電特性分析 67 4.4.2 不同SubPc厚度之元件光電特性分析 72 4.4.3 不同SubPc厚度之材料分析 78 第五章 SubPc/C60最佳化吸光層參數搭配雙有機絕緣層以提高光電參數之實驗與分析 80 5.1 簡介 80 5.1.1 文獻回顧 80 5.1.2 實驗動機 81 5.2 實驗流程 81 5.3 PVA/PVP 搭配最佳化有機吸光層之電特性分析 88 5.3.1 PVA/PVP接觸角及表面形貌分析 91 5.4 PVA/PVP搭配最佳化有機吸光層之光電特性分析 94 第六章 結論與未來展望 100 6.1 結論 100 6.2 未來展望 102 參考文獻 103

    [1]W. Qi, Q. Xu, Z. Yiqi, Y. Ding, J. Su, and W. Wang, “Highly stable, low-voltage operable high-mobility flexible organic thin-film transistors based on a trilayer gate dielectric”, Flexible and Printed Electronics, Vol. 7, No. 1, (2022).
    [2]Y. Gao, Y. Yi, X. Wang, H. Meng, D. Lei, X. F. Yu, P. K. Chu, and J. Li, “A Novel Hybrid-Layered Organic Phototransistor Enables Efficient Intermolecular Charge Transfer and Carrier Transport for Ultrasensitive Photodetection”, Advanced Material, Vol. 31, No. 16, (2019).
    [3]J. H. Kim, S. Oh, S. K. Park, and S. Y. Park, “Green-Sensitive Phototransistor Based on Solution Processed 2D n-Type Organic Single Crystal”, Advanced Electronic Materials, Vol. 31, No. 16, (2019).
    [4]Z. El Jouad, E.M. El-Menyawy, G. LouarnL. Arzel, M. Morsli, M. AddouJ., C. Bernède, and L. Cattin, “The effect of the band structure on the Voc value of ternary planar heterojunction organic solar cells based on pentacene, boron subphthalocyanine chloride and different electron acceptors”, Journal of Physics and Chemistry of Solids, Vol. 136, (2020).
    [5]Bang Joo Song, Kihyon Hong, Woong-Kwon Kim, Kisoo Kim, Sungjun Kim, and Jong-Lam Lee, “Effect of Oxygen Plasma Treatment on Crystal Growth Mode at Pentacene/Ni Interface in Organic Thin-Film Transistors”, J. Phys. Chem. B, Vol, 114, No. 46, pp. 14854–14859, (2010).
    [6]X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, “Enhancement of Electron Injection in Organic Light-Emitting Devices Using an Ag/Lif Cathode”, Journal of Applied Physics, Vol. 95, p.3828, (2004).
    [7]V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman, ”Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices”, Proceeding Of The IEEE, Vol. 93, p. 1330, (2005).
    [8]Qiang Ren, Qingsheng Xu, Hongquan Xia, Xiao Luo, Feiyu Zhao, Lei Sun, and Yao Li, “High performance photoresponsive field-effect transistorson MoS2/Pentacene heterojunction”, Organic Electronics51, p142-148, (2017).
    [9]Wenli Lv, Lili Du, Yingquan Peng, Zhong ZhaoY. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plastic electronics”, Applied Physics Letters, Vol, 81, p.562, (2002).
    [10]T. Ahn, H. Jung, H. J. Suk, and M. H. Yi, “Effect of postfabrication thermal annealing on the electrical performance of Pentacene organic thin-film transistors”, Synthetic Metals, Vol. 159, pp. 1277-1280, (2009).
    [11]A.Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film”, Applied Physics Letters, Vol. 49, pp, 1210, (1986).
    [12]A. Assadi, C. Svensson, M. Willander, and O. Ingans, “Field‐effect mobility of poly(3‐hexylthiophene)”, Applied Physics Letters, Vol. 53. pp. 195, (1988).
    [13] J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen, “Lower Dimensional Systems and Molecular Devices”, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).
    [14] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility”, Applied Physics Letters, Vol. 69, pp. 4108, (1996).
    [15]H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers”, Science, Vol. 280, pp. 1741-1744, (1998).
    [16]F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene /polysiloxane interface”, Journal of Applied Physics, Vol. 54, pp. 3255 , (1983).
    [17]J. H. Burroughes, C. A. Jones, and R. H. Friend, “New semiconductor device physics in polymer diodes and transistors”, Nature, Vol. 335, pp. 137-141, (1988).
    [18]H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility”, Applied Physics Letters, Vol. 63, pp. 1372, (1993).
    [19]F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers”, Journal of the American Chemical Society, Vol. 115, pp. 8716, (1993).
    [20]B. Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, and F. Garnier, “Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films”, Chemistry of Materials, Vol. 6, pp. 1809, (1994).
    [21]A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics”, Science, Vol. 268, pp. 270-271, (1995).
    [22]C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, “Field-Effect Transistors Comprising Molecular Beam Deposited α-ω-Di-hexyl-hexathienylene and Polymeric Insulators”, Synthetic Metals, Vol. 92, pp. 47, (1998).
    [23]H. E. Katz, L. Torsi, and A . Dodabalapur, “Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers”, Chemistry of Materials, Vol. 7, pp. 2235-2237, (1995).
    [24]R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, and F . Garnier, “Organic transistors using-octithiophene and, -dihexyl-octithiophene: Influence of oligomer length versus molecular ordering on mobility”, Advanced Material, Vol. 9, pp. 557-561, (1997).
    [25]R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, and F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene”, Advanced Material, Vol. 9, pp. 389-391, (1997).
    [26]J. H. Schön, Ch. Kloc, and B. Batlogg, “On the intrinsic limits of Pentacene field-effect transistors”, Organic Electronics, Vol. 1, pp. 57-64, (2000).
    [27]C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of Pentacene for organic field effect transistor applications”, Journal of Applied Physics, Vol. 80, pp. 2501, (1996).
    [28]Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors”, 54th Annual Device Research Conference Digest, New York, pp. 80, (1996).
    [29]G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors”, Synthetic Metals, Vol. 51, pp. 419-424, (1992).
    [30]R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, “C60 thin film transistors”, Applied Physics Letter, Vol. 67, pp. 121, (1995).
    [31]J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512–515, (1993).
    [32]J. Guo, D. Liu, W. Li, B. Yu, H. Tian, F. Zhu, and D. Yan, “High-performance 2,9-DPh-DNTT organic thin-film transistor by weak epitaxy growth method”, Organic Electronics, Vol. 93, (2021).
    [33]T. Jiang, W. Malone, Y. Tong, D. Dragoe, A. Bendounan, A. Kara, and Vladimir A. Esaulov, “Thiophene Derivatives on Gold and Molecular Dissociation Processes”, Journal of Physical Chemistry C, Vol. 121, pp. 27923-27935, (2017).
    [34]G. Guillaud, M. Al Sadound, and M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors”, Chemical Physics Letters, Vol. 167, pp. 503, (1990).
    [35]Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors”, Journal of the American Chemical Society, Vol. 120, pp. 207, (1998).
    [36]“Organic Electronic: Introduction”, IBM Journal of Research and Development, Vol.45, No.1, pp.3-9, (2001).
    [37]Ke Zhou, Huanli Dong, Hao-li Zhang, and Wenping Hu, “High performance n-type and ambipolar small organic semiconductors for organic thin film transistors”, Phys. Chem. Chem. Phys, Vol. 16, pp. 22448 -22457, (2014).
    [38]E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon”, Physical Review Letters, Vol. 103, pp. 51-61 (1956).
    [39]N. F. Mott, “On the Transition to Metallic Conduction in Semiconductors”, Canadian Journal of Physics. Vol. 34, p. 1356 (1956).
    [40]S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors”, Masters Thesis, University of Cagliari, (2009).
    [41]P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films, “Physical Review Letters”, Vol. 25, p. 509 (1970).
    [42]C. W. Kuo, “Properties of Carriers Transportation in Organic Thin Film Transistors”, Masters Thesis, National Cheng Kung University, Tainan, Taiwan (2006).
    [43]R Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, “Effects of O2 and H2O in electrical characteristics of Pentacene thin film transistors”, Thin Solid Films, Vol. 464-465, pp. 437-440, (2004).
    [44]D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deposition of SiOH on SiO2 gate-insulator surface”, Applied Physics Letter, Vol. 92, pp. 093309, (2008).
    [45]Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric”, Organic Electronics, Vol. 7, pp. 271-275, (2006).
    [46]Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letter, Vol. 80, pp. 151, (2002).
    [47]I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors”, IEEE Transaction0s on electron devices, Vol. 48, No. 6, (2001).
    [48]G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors”, Applied Physics Letters, Vol. 84, No. 2, (2004).
    [49]A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, “Field-effect transistor made from solution-procceed organic semiconductors”, Synthetic Metals, Vol. 88, pp. 37-55, (1997).
    [50]A. Pierre, A. Gaikwad, and A. C. Arias, Nature Photonics, vol. 11, p. 193, (2017).
    [51]N. K. Za’aba, and D. M. Taylor, “Photo-induced Effects in Organic Thin Film Transistors Based on Dinaphtho [2,3- b:2',3'-f] Thieno[3,2-b'] Thiophene (DNTT)”, Organic Electronics, Vol. 65, pp. 39-48, (2019).
    [52]C. W. Tang, “Two layer organic photovoltaic cell”, Applied Physics Letters, Vol. 48, pp. 183-185, (1986).
    [53]Mir Waqas Alam, “Current progress in electrode/pentacene interfaces of pentacene-based organic thin films transistors: A review”, Materials Express, Vol. 9, pp. 691-703, (2019).
    [54]Y. Y. Noh, and D. Y. Kim, “Organic phototransistor based on pentacene as an efficient red light sensor”, Solid-State Electronics, Vol. 51, pp. 1052-1055 (2007).
    [55]A. K. Pandey, P. E. Shaw, D. W. Samuel, and J. M. Nunzi, “Effect of metal cathode reflectance on the exciton-dissociation efficiency in heterojunction organic solar cells”, Applied Physics Letters, Vol. 94, No. 10, (2009).
    [56]J. Kim, and S. Yim, “Influence of surface morphology evolution of SubPc layers on the performance of SubPc/C60 organic photovoltaic cells”, Applied Physics Letters, Vol. 99, No. 19, (2011).
    [57]F. Jin, B. Chu, W. Li, Z. Su, X. Yan, J. Wang, R. Li, B. Zhao, T. Zhang, Y. Gao, C.S. Lee, H. Wu, F. Hou, T. Lin, and Q. Song, “Highly efficient organic tandem solar cell based on SubPc:C70 4 bulk heterojunction”, Organic Electronics, Vol. 15, pp. 3756-3760, (2014).
    [58]D.A. Said, A.M. Ali, M.M. Khayyat, M. Boustimi, M. Loulou, and R. Seoudi, “A study of the influence of plasmonic resonance of gold nanoparticle doped PEDOT: PSS on the performance of organic solar cells based on CuPc/C60”, Heliyon, Vol. 5, No. 11, (2019).
    [59]J. Yang, Q. Sun, K. Yonezawa, A. Hinderhofer, A. Gerlach, K. Broch, F. Bussolotti, Xu Gao, Y. Q. Li, J. Tang, F. Schreiber, N. Ueno, S. D.Wang, and S. Kera, “Interface optimization using diindenoperylene for C60 thin film transistors with high electron mobility and stability”, Organic Electronics, Vol. 15, pp. 2749-2755, (2014)
    [60]Q. Dai, S. Xu, Y. Peng, W. Lv, L. Sun, and Y. Wei, “Anomalous photocurrent characteristics in fullerene C60 thin film-based organic field-effect transistors under illumination”, Chemical Physics Letters, Vol. 742, (2020).
    [61]S. K. Samanta, I. Song, J. H. Yoo, and J. H. Oh, “Organic n Channel Transistors Based on [1] Benzothieno [3,2 b] benzothiophene − Rylene Diimide Donor − Acceptor Conjugated Polymers”, ACS Applied Materials and Interfaces, Vol. 10, pp. 32444-32453, (2018).
    [62]Thomas H. Debesay, and S. S. Sun, “Phototransistors Based on A Lightly Doped P3HT”, MRS Advances, (2020).
    [63]B. Yao, Y. Li, Z. Wen, M. Zhou, W. Lv, X. Luo, Y. Peng, W. Li, G Gonga, and X. Liu, “Correlating optimal electrode buffer layer thickness with the surface roughness of the active layer in organic phototransistors”, Synthetic Metals, Vol. 193, pp. 35-40, (2014).
    [64]Z. El Jouad, M. Morsli, G. Louarn, L. Cattin, M. Addou, and J.C. Bernède, “Improving the efficiency of subphthalocyanine based planar organic solar cells through the use of MoO3/CuI double anode buffer layer”, Solar Energy Materials & Solar Cells, Vol. 141, pp. 429-435, (2015).
    [65]S. Li, D. Li, W. Qi, M. Xu, and Wei Wang, “Low-Voltage Operated Organic Thin-Film Transistors with Mobility Exceeding 10 cm²/vs”, IEEE Electron Device Letters, Vol. 42, pp. 398-401, (2021).
    [66]X. Zhuang, X. Wang, H. Fan, and J. Yu, “High performance N-type organic thin-film transistor based on biocompatible silk fibroin: poly(vinyl alcohol)-blended dielectric layer”, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 10843, (2018).
    [67]Y. Yousf1, A. Jouili1, S. Mansouri, L. El Mir, Ahmed Al Ghamdi, A. G. Al Sehemi, and F. Yakuphanoglu, “Effect of the Active Layer Thickness of Pentacene Thin Film Transistor; Illumination Efect”, Journal of Electronic Materials, Vol. 10843, (2021).
    [68]S. H. Jin, J. S. Yu, C. A. Lee, J. W. Kim, Byung-Gook Park, and J. D. Lee, “Pentacene OTFTs with PVA Gate Insulators on a Flexible Substrate”, Journal of the Korean Physical Society, Vol. 44, pp. 181-184 (2004).
    [69]S. Hoon Yu, J. Cho, J. U. Ha, and D. S. Chung, “Facile polymer gate dielectric surface-modification for organic thin film transistors using self-assembled surfactant layer”, Organic Electronics, Vol. 41, pp. 327-332 (2017).
    [70]H. Dong, X. Fu, J. Liu, Z. Wang, and W. Hu, “25th Anniversary Article: Key Points for High-Mobility Organic Field-Effect Transistors”, Advanced Materials, Vol. 25, pp. 6158-6183 (2013).
    [71]T. Han, L. Liu, M. Shou, Z. Xie, L. Ying, C. Jiang, X. Huang, H. Li, and Y. Ma, “2Lateral Polymer Photodetectors Using Silver Nanoparticles Promoted PffBT4T-2OD:PC61BM Composite”, ACS Photonics, Vol. 5, pp. 4650-4659, (2018).
    [72]L. Vijayan, K. Shreekrishna Kumar, and K.B. Jinesh, “Influence of intensity on copper phthalocyanine based organic phototransistors”, Materials Today: Proceedings, Vol. 47, pp. 1099-1103, (2021).
    [73]B. Yao, W. Lv, D. Chen, G. Fan, M. Zhou, and Y. Peng, “Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/ drain electrodes”, Applied Physics Letters, Vol. 101, No. 16, (2012).
    [74]Y. Che, G. Zhang, Y. Zhang, X. Cao, M. Cao, Y. Yu, H. Dai, and J. Ya, “Solution-processed graphene phototransistor functionalized with P3HT/graphene bulk heterojunction”, Optics Communications, Vol. 425, pp. 161-165, (2018).
    [75]C. Yongli, C. Xiaolong, Z. Yating, and Y. Jianquan, “Highly responsive graphene phototransistor for visible light enhanced by poly(3-hexylthiophene)”, Journal of Applied Physics, Vol. 125, No. 19, (2019).
    [76]H. Im and S. Ki, “Effectively Enhanced Broadband Phototransistors Based on Multilayer WSe2/Pentacene”, Advanced Electronic Materials, Vol. 7, No. 5, (2021).
    [77]F. Huang, X. Wang, K. Xu, Y. Liang, Y. Peng, and G. Liu, “Broadband organic phototransistor with high photoresponse from ultraviolet to near-infrared realized via synergistic effect of trilayer heterostructure”, Journal of Materials Chemistry C, Vol. 6, No. 32, pp. 8804-8811, (2018).
    [78]Jesse T. E. Quinn, F. Haider, H. Patel, Daid A. Khan, Z. Y. Wang, and Y. Li, “Ultrafast photoresponse organic phototransistors based on pyrimido[4,5-g]quinazoline-4,9-dione polymer”, Journal of Materials Chemistry C, Vol. 5, No. 34, pp.8742-8748, (2017).
    [79]F. Huang, Y. Li, H. Xia, J. Zhang, K. Xu, Y. Peng, and G. Liu, “Towards high performance broad spectral response fullerene basedphotosensitive organic field-effect transistors with tricomponent bulk heterojunctions”, Carbon, Vol. 118, pp.666-674, (2017).
    [80]C. Lee, H. Han, M. Song, J. Seo, H. Kim, and Y. Kim, “Organic phototransistors with bulk heterojunction sensing-channel layers containing soluble difluorinated diketopyrrolopyrrole acceptor”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, No. 2, (2018).
    [81]T. Han, Q. Liu, Y. Guo, G. Jin, S. Ding, M. Yao, C. Jiang, H. Wang, X. Huang, and F. Cha, “Phase Control Behavior of Lateral Polymer Photodetectors Using Strong Aggregation Bulk Heterojunction Film”, Macromolecular Chemistry and Physics, Vol. 221, No. 7, (2020).

    無法下載圖示 全文公開日期 2027/08/20 (校內網路)
    全文公開日期 2027/08/20 (校外網路)
    全文公開日期 2027/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE