簡易檢索 / 詳目顯示

研究生: 王彥儒
Yan-Ru Wang
論文名稱: AlCrNbSiTiN/TiBN高熵合金氮化物多層薄膜微結構、機械性質和抗腐蝕性研究
Evaluation of microstructure, mechanical properties and corrosion resistance of AlCrNbSiTiN/TiBN multilayer high entropy alloy nitride coatings
指導教授: 王朝正
Chao-Jheng Wang
李志偉
Jhih-Wei Li
口試委員: 王朝正
Chao-Jheng Wang
李志偉
Jhih-Wei Li
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 119
中文關鍵詞: 高熵合金氮化物多層薄膜
外文關鍵詞: AlCrNbSiTiN/TiBN, nitride coatings
相關次數: 點閱:386下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用高功率脈衝磁控濺射鍍膜系統,以Al4Cr2NbSiTi2高熵合金靶和TiB2靶在矽晶片與304、420不銹鋼表面鍍製六種不同雙層週期厚度的高熵合金氮化物多層薄膜,並使用場發射掃描電子顯微鏡和穿透式電子顯微鏡研究薄膜的微結構,使用納米壓痕儀、刮痕試驗儀和磨耗測試儀分別評估高熵合金氮化物多層薄膜的硬度、韌性、附著力和摩擦學性能。
    首先將AlCrNbSiTiN層和TiBN層的厚度比控制在1:1至1:1.42之間且氮氣與氬氣的比例為1:1,而AlCrNbSiTiN/TiBN的雙層週期厚度介於10到80 nm之間。接著將AlCrNbSiTiN層和TiBN層的厚度比控制在1:1至1:1.30之間且氮氣與氬氣的比例為1:1.5,而AlCrNbSiTiN/TiBN的雙層週期厚度介於5到50 nm之間,實驗結果顯示將氮氣通量從30 sccm上升到45 sccm,從化學成分結果可以得知氮氬比1:1的氮含量為45.5到46.5 at.%,氮氬比1:1.5的氮含量為45.6~48.49 at.%,氮含量上升了2~3 at.%,由於氮氣含量的上升使得TiBN造成薄膜的機械性質下降,從硬度與彈性係數結果中可以看到,氮氬比1:1為雙層週期厚度24 nm有最高硬度值18.4 GPa,而氮氬比1:1.5為雙層週期厚度40 nm有最高硬度值17.7 GPa,會造成兩組實驗硬度值低落,因為氮的含量偏高而生成軟質非晶之氮化硼相,造成整體硬度值的下降,從抗腐蝕試驗的結果可以看到,氮氬比1:1與氮氬比1:1.5的薄膜以雙層週期厚度9 nm的腐蝕阻抗約為304SS的9倍,雙層週期厚度25 nm約為304SS的73倍且鈍化區間大部分均高於304SS,這代表有不錯的抗腐蝕能力,其原因為結晶是在高熵合金層且有形成緻密結構而讓多層薄膜有優越的抗腐蝕能力。


    In this study, six kinds of AlCrNbSiTiN/TiBN high entropy alloy multilayers with different periodic thickness were prepared on the surface of silicon wafer and 304, 420 stainless steel using high power pulsed magnetron sputtering coating system. The structure of the multilayers was studied by field emission scanning electron microscopy and penetrating electron microscopy. The nanoindentation apparatus, nanoindentation apparatus and TiB2 target were used. Scratch and wear testers were used to evaluate the hardness, toughness, adhesion and Tribological Properties of high-entropy alloy nitride multilayers. The effects of different double-layer periodic thickness on the properties of CRAlNbSiTiN/TiBN high-entropy alloy nitride multilayers were investigated.
    In the first part of the experiment, the thickness ratio of AlCrNbSiTiN layer to TiBN layer was controlled from 1:1 to 1:1.42 and the ratio of nitrogen to argon was 1:1. The double-layer periodic thickness of AlCrNbSiTiN/TiBN was between 10 and 80 nanometers. The second part of the experiment is to control the thickness ratio of AlCrNbSiTiN layer to TiBN layer between 1:1:1.30 and the ratio of nitrogen to argon is 1:1.5, while the double-layer cycle thickness of AlCrNbSiTiN/TiBN is between 5 and 50 nanometers. The experimental results show that the nitrogen flux increases from 30 sccm to 45 sccm. From the chemical composition results, the nitrogen content in the first part of the experiment is 45.5 to 46.5 at.%, and the nitrogen content in the second part is 45.6 to 48.49 at.%. The mechanical properties of TiBN film are decreased due to the increase of nitrogen content by 2~3 at.%. It can be seen from the results of hardness and elastic coefficient that the first part of the experiment has a maximum hardness value of 18.4 GPa for M20 and the second part has a maximum hardness value of 17.7 GPa for S40, which results in a low hardness value for both groups. The high content of nitrogen results in a soft amorphous boron nitride phase, which results in a decrease in the overall hardness value. From the results of the corrosion resistance test, we can see that the film from the first part and the second part have excellent corrosion resistance. The corrosion resistance of M10 is about 9 times of 304SS, S30 is about 73 times of 304SS, and the passivation interval is mostly higher than 304SS. This indicates good corrosion resistance. The reason may be that crystallization is in high-entropy alloy layer with compact structure, which makes the multilayer film have superior corrosion resistance.

    目錄 摘要.......... I Abstract..III 誌謝.........V 目錄....... VI 圖目錄... IX 表目錄..XV 第一章 研究動機與目的......1 第二章 文獻回顧 ....................2 2.1 磁控濺鍍系統 ...........2 2.2 直流(DC)磁控濺鍍系統............................3 2.3 射頻式(RF)磁控濺鍍系統.........................4 2.4 反應性氣體濺鍍(Reactive Gas Sputtering)................................5 2.5 高功率脈衝磁控濺鍍 ................................8 2.5.1 脈衝製程參數9 2.5.2 薄膜特性 ......10 2.6 高熵合金(High-entropy alloy)定義.........12 2.6.1 高熵效應(High-entropy effect).....12 2.6.2 晶格畸變效應(Lattice distortion effect)........................13 2.6.3 緩慢擴散效應(Sluggish diffusion effect)......................14 2.6.4 雞尾酒效應(Cocktail effects) .......14 2.7 奈米多層薄膜 .........15 2.7.1 相同結晶結構多層薄膜...............15 2.7.2 相異結晶結構多層薄膜...............16VII 2.8 奈米多層薄膜韌性提升機制 ..................18 2.9 (AlCrNbSiTi)N 薄膜特性.........................19 2.10 TiBN 薄膜特性.......22 第三章 實驗方法 ..................26 3.1 實驗流程 .................26 3.1.1 氮氬比 1:1 ....27 3.1.2 氮氬比 1:1.5 .28 3.2 實驗方法 .................29 3.2.1 基材試片規格...............................30 3.2.2 前處理 ..........31 3.2.3 實驗流程 ......32 3.3 薄膜性質分析 .........34 3.3.1 化學成分分析...............................34 3.3.2 橫截面形貌分析...........................35 3.3.3 晶相結構分析...............................37 3.3.4 表面形貌分析...............................38 3.3.5 硬度與彈性係數分析...................39 3.3.6 刮痕附著性分析...........................41 3.3.7 磨耗試驗 ......43 3.3.8 磨耗率分析..44 3.3.9 抗腐蝕性分析...............................45 第四章 結果與討論 ..............47 4.1 氮氣與氬氣比例 1:1 多層薄膜特性分析................................47 4.1.1 化學成分 ......47VIII 4.1.2 晶體結構 ......49 4.1.3 表面形貌 ......50 4.1.4 橫截面結構...................................53 4.1.5 TEM 結構......55 4.1.6 硬度與彈性係數...........................61 4.1.7 殘留應力 ......63 4.1.8 附著性 ..........64 4.1.9 磨耗與磨耗率...............................70 4.1.10 抗腐蝕試驗73 4.2 氮氣與氬氣比例 1:1.5 多層薄膜特性分析.............................76 4.2.1 化學成分 ......76 4.2.2 晶體結構 ......78 4.2.3 表面形貌 ......79 4.2.4 橫截面結構..82 4.2.5 TEM 結構......84 4.2.6 硬度與彈性係數...........................92 4.2.7 殘留應力 ......94 4.2.8 附著性 ..........95 4.2.9 磨耗與磨耗率.............................101 4.2.10 抗腐蝕試驗...............................104 第五章 結論.........................107 第六章 未來研究方向 ........109 參考

    參考文獻
    [1] Holleck, H., and Schier, A. V. (1995). Multilayer PVD coatings for
    wear protection. Surface and Coatings Technology, 76, 328-336.
    [2] Martinho, R. P., Silva, F. J., Alexandre, R. J. D., and Baptista, A. P.
    M. (2011). TiB2 nanostructured coating for GFRP injection moulds.
    Journal of Nanoscience and Nanotechnology, 11(6), 5374-5382.
    [3] Baptista, A., Silva, F. J. G., Porteiro, J., Míguez, J. L., Pinto, G., and
    Fernandes, L. (2018). On the physical vapour deposition (PVD):
    evolution of magnetron sputtering processes for industrial
    applications. Procedia Manufacturing, 17, 746-757.
    [4] Dolinšek, S., Šuštaršič, B., and Kopač, J. (2001). Wear mechanisms
    of cutting tools in high-speed cutting processes. Wear, 250(1-12),
    349-356.
    [5] Kelly, P. J., and Arnell, R. D. (2000). Magnetron sputtering: a review
    of recent developments and applications. Vacuum, 56(3), 159-172.
    [6] Swann, S. (1988). Magnetron sputtering. Physics in
    technology, 19(2), 67.
    [7] Rossnagel, S. M. (1999). Sputter deposition for semiconductor
    manufacturing. IBM Journal of Research and Development, 43(1.2),
    163-179.
    [8] Kelly, P. J., and Arnell, R. D. (1998). The influence of magnetron
    configuration on ion current density and deposition rate in a dual
    unbalanced magnetron sputtering system. Surface and Coatings
    Technology, 108, 317-322.111
    [9] Palmero, A., Van Hattum, E. D., Arnoldbik, W. M., Vredenberg, A.
    M., and Habraken, F. H. P. M. (2004). Characterization of the plasma
    in a radio-frequency magnetron sputtering system. Journal of
    applied physics, 95(12), 7611-7618.
    [10] Behera, A., Aich, S., and Theivasanthi, T. (2022). Magnetron
    sputtering for development of nanostructured materials. In Design,
    Fabrication, and Characterization of Multifunctional
    Nanomaterials (pp. 177-199). Elsevier.
    [11] Safi, I. (2000). Recent aspects concerning DC reactive magnetron
    sputtering of thin films: a review. Surface and Coatings
    Technology, 127(2-3), 203-218.
    [12] Gudmundsson, J. T., Brenning, N., Lundin, D. and Helmersson, U.
    (2012). High power impulse magnetron sputtering
    discharge. Journal of Vacuum Science and Technology A: Vacuum,
    Surfaces, and Films, 30(3), 030801.
    [13] Oskirko, V. O., Semenov, V. D., Solovyev, A. A., Rabotkin, S. V.,
    Pavlov, A. P., and Zakharov, A. N. (2022). Arc energy minimization
    in high-power impulse magnetron sputtering. Vacuum, 202, 111213.
    [14] Sarakinos, K., Alami, J., and Konstantinidis, S. (2010). High power
    pulsed magnetron sputtering: A review on scientific and engineering
    state of the art. Surface and coatings technology, 204(11), 1661-
    1684.
    [15] Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A. P., and
    Gudmundsson, J. T. (2006). Ionized physical vapor deposition112
    (IPVD): A review of technology and applications. Thin solid
    films, 513(1-2), 1-24.
    [16] Ehiasarian, A. P., Wen, J. G., and Petrov, I. (2007). Interface
    microstructure engineering by high power impulse magnetron
    sputtering for the enhancement of adhesion. Journal of applied
    physics, 101(5), 054301.
    [17] Ehiasarian, A. P., Hovsepian, P. E., Hultman, L., and Helmersson, U.
    (2004). Comparison of microstructure and mechanical properties of
    chromium nitride-based coatings deposited by high power impulse
    magnetron sputtering and by the combined steered cathodic
    arc/unbalanced magnetron technique. Thin solid films, 457(2), 270-
    277.
    [18] Reinhard, C., Ehiasarian, A. P., and Hovsepian, P. E. (2007).
    CrN/NbN superlattice structured coatings with enhanced corrosion
    resistance achieved by high power impulse magnetron sputtering
    interface pre-treatment. Thin Solid Films, 515(7-8), 3685-3692.
    [19] Ehiasarian, A. P., Wen, J. G., and Petrov, I. (2007). Interface
    microstructure engineering by high power impulse magnetron
    sputtering for the enhancement of adhesion. Journal of applied
    physics, 101(5), 054301.
    [20] Ehiasarian, A. P., Münz, W. D., Hultman, L., Helmersson, U., and
    Petrov, I. (2003). High power pulsed magnetron sputtered CrNx
    films. Surface and coatings technology, 163, 267-272.113
    [21] Ehiasarian, A. P., Hovsepian, P. E., Hultman, L., and Helmersson, U.
    (2004). Comparison of microstructure and mechanical properties of
    chromium nitride-based coatings deposited by high power impulse
    magnetron sputtering and by the combined steered cathodic
    arc/unbalanced magnetron technique. Thin solid films, 457(2), 270-277.
    [22] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T.
    and Chang, S. Y. (2004). Nanostructured high‐entropy alloys with
    multiple principal elements: novel alloy design concepts and
    outcomes. Advanced engineering materials, 6(5), 299-303.
    [23] Yeh, J. W. (2006). Recent progress in high entropy alloys. Ann.
    Chim. Sci. Mat, 31(6), 633-648.
    [24] Zhang, W., Liaw, P. K., and Zhang, Y. (2018). Science and
    technology in high-entropy alloys. Sci. China Mater, 61(1), 2-22.
    [25] Lu, Z. P., Wang, H., Chen, M. W., Baker, I., Yeh, J. W., Liu, C. T.,
    and Nieh, T. G. (2015). An assessment on the future development of
    high-entropy alloys: Summary from a recent
    workshop. Intermetallics, 66, 67-76.
    [26] Gao, M. C. (2016). Design of high-entropy alloys. High-entropy
    alloys: fundamentals and applications, 369-398.
    [27] Sheng, G. U. O., and Liu, C. T. (2011). Phase stability in high
    entropy alloys: Formation of solid-solution phase or amorphous
    phase. Progress in Natural Science: Materials International, 21(6),
    433-446.114
    [28] Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., and Liaw, P. K. (2008).
    Solid‐solution phase formation rules for multi‐component
    alloys. Advanced engineering materials, 10(6), 534-538.
    [29] Zhang, C., Zhang, F., Diao, H., Gao, M. C., Tang, Z., Poplawsky, J.
    D., and Liaw, P. K. (2016). Understanding phase stability of Al-CoCr-Fe-Ni high entropy alloys. Materials and Design, 109, 425-433.
    [30] Chuang, M. H., Tsai, M. H., Wang, W. R., Lin, S. J., and Yeh, J. W.
    (2011). Microstructure and wear behavior of AlxCo1. 5CrFeNi1.
    5Tiy high-entropy alloys. Acta Materialia, 59(16), 6308-6317.
    [31] Zhang, S., Sun, D., Fu, Y., and Du, H. (2005). Toughening of hard
    nanostructural thin films: a critical review. Surface and Coatings
    Technology, 198(1-3), 2-8.
    [32] Han, Z. D., Chen, N., Zhao, S. F., Fan, L. W., Yang, G. N., Shao, Y.,
    and Yao, K. F. (2017). Effect of Ti additions on mechanical
    properties of NbMoTaW and VNbMoTaW refractory high entropy
    alloys. Intermetallics, 84, 153-157.
    [33] Liu, C. M., Wang, H. M., Zhang, S. Q., Tang, H. B., and Zhang, A.
    L. (2014). Microstructure and oxidation behavior of new refractory
    high entropy alloys. Journal of alloys and compounds, 583, 162-169.
    [34] Stueber, M., Holleck, H., Leiste, H., Seemann, K., Ulrich, S., and
    Ziebert, C. (2009). Concepts for the design of advanced nanoscale
    PVD multilayer protective thin films. Journal of Alloys and
    Compounds, 483(1-2), 321-333.115
    [35] Helmersson, U., Todorova, S., Barnett, S. A., Sundgren, J. E.,
    Markert, L. C., and Greene, J. E. (1987). Growth of single‐crystal
    TiN/VN strained‐layer superlattices with extremely high mechanical
    hardness. Journal of Applied Physics, 62(2), 481-484.
    [36] Mirkarimi, P. B., Hultman, L., and Barnett, S. A. (1990). Enhanced
    hardness in lattice‐matched single‐crystal TiN/V0. 6Nb0. 4N
    superlattices. Applied physics letters, 57(25), 2654-2656.
    [37] Kim, J. O., Achenbach, J. D., Shinn, M., and Barnett, S. A. (1992).
    Effective elastic constants and acoustic properties of single-crystal
    TiN/NbN superlattices. Journal of materials research, 7(8), 2248-
    2256.
    [38] Setoyama, M., Nakayama, A., Tanaka, M., Kitagawa, N., and
    Nomura, T. (1996). Formation of cubic-A1N in TiN/A1N
    superlattice. Surface and Coatings Technology, 86, 225-230.
    [39] Nordin, M., Larsson, M., and Hogmark, S. (1998). Mechanical and
    tribological properties of multilayered PVD TiN/CrN, TiN/MoN,
    TiN/NbN and TiN/TaN coatings on cemented carbide. Surface and
    coatings technology, 106(2-3), 234-241.
    [40] Soe, W. H., and Yamamoto, R. (1997). Mechanical properties of
    ceramic multilayers: TiN/CrN, TiN/ZrN, and TiN/TaN. Materials
    Chemistry and Physics, 50(2), 176-181.
    [41] Shih, K. K., and Dove, D. B. (1992). Ti/Ti‐N Hf/Hf‐N and W/W‐N
    multilayer films with high mechanical hardness. Applied physics
    letters, 61(6), 654-656.116
    [42] Chu, X., Wong, M. S., Sproul, W. D., and Barnett, S. A. (1993).
    Mechanical properties and microstructures of polycrystalline
    ceramic/metal superlattices: TiN/Ni and TiN/Ni0. 9Cr0. 1. Surface
    and Coatings Technology, 61(1-3), 251-256.
    [43] Madan, A., Wang, Y. Y., Barnett, S. A., Engström, C., Ljungcrantz,
    H., Hultman, L., and Grimsditch, M. (1998). Enhanced mechanical
    hardness in epitaxial nonisostructural Mo/NbN and W/NbN
    superlattices. Journal of applied physics, 84(2), 776-785.
    [44] Baran, Ö., Sukuroglu, E. E., Efeoglu, İ., and Totik, Y. (2016). The
    investigation of adhesion and fatigue properties of TiN/TaN
    multilayer coatings. Journal of adhesion science and
    Technology, 30(20), 2188-2200.
    [45] Ulrich, S., Ziebert, C., Stüber, M., Nold, E., Holleck, H., Göken, M.
    and Schloßmacher, P. (2004). Correlation between constitution,
    properties and machining performance of TiN/ZrN
    multilayers. Surface and Coatings Technology, 188, 331-337.
    [46] Hsieh, J. H., Liang, C., Yu, C. H., and Wu, W. (1998). Deposition
    and characterization of TiAlN and multi-layered TiN/TiAlN coatings
    using unbalanced magnetron sputtering. Surface and Coatings
    Technology, 108, 132-137.
    [47] Santecchia, E., Cabibbo, M., Hamouda, A. M. S., Musharavati, F.,
    Popelka, A., and Spigarelli, S. (2019). Investigation of the
    temperature-related wear performance of hard nanostructured
    coatings deposited on a S600 high speed steel. Metals, 9(3), 332.117
    [48] Prengel, H. G., Jindal, P. C., Wendt, K. H., Santhanam, A. T., Hegde,
    P. L., and Penich, R. M. (2001). A new class of high performance
    PVD coatings for carbide cutting tools. Surface and coatings
    technology, 139(1), 25-34.
    [49] Berger, M., Wiklund, U., Eriksson, M., Engqvist, H., and Jacobson,
    S. (1999). The multilayer effect in abrasion—optimising the
    combination of hard and tough phases. Surface and Coatings
    Technology, 116, 1138-1144.
    [50] Yang, Q., Seo, D. Y., and Zhao, L. R. (2004). Multilayered coatings
    with alternate pure Ti and TiN/CrN superlattice. Surface and
    Coatings Technology, 177, 204-208.
    [51] Tavares, C. J., Rebouta, L., Alves, E., Cavaleiro, A., Goudeau, P.,
    Rivière, J. P., and Declemy, A. (2000). A structural and mechanical
    analysis on PVD-grown (Ti, Al) N/Mo multilayers. Thin Solid
    Films, 377, 425-429.
    [52] Zhang, S., Sun, D., Fu, Y., and Du, H. (2005). Toughening of hard
    nanostructural thin films: a critical review. Surface and Coatings
    Technology, 198(1-3), 2-8.
    [53] Liu, Y., Zhang, X., Tu, M., Hu, Y., Wang, H., Zhang, J., ... and Yang,
    B. (2022). Structure and mechanical properties of multi-principalelement (AlCrNbSiTi) N hard coating. Surface and Coatings
    Technology, 433, 128113.118
    [54] Hsieh, M. H., Tsai, M. H., Shen, W. J., and Yeh, J. W. (2013).
    Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy
    nitride coatings. Surface and Coatings Technology, 221, 118-123.
    [55] Panjan, P., Drnovšek, A., Gselman, P., Čekada, M., and Panjan, M.
    (2020). Review of growth defects in thin films prepared by PVD
    techniques. Coatings, 10(5), 447.
    [56] Zhao, J. P., Wang, X., Chen, Z. Y., Yang, S. Q., Shi, T. S., and Liu,
    X. H. (1997). Overall energy model for preferred growth of TiN
    films during filtered arc deposition. Journal of Physics D: Applied
    Physics, 30(1), 5.
    [57] Aouadi, K., Tlili, B., Nouveau, C., Besnard, A., Chafra, M., and
    Souli, R. (2019). Influence of substrate bias voltage on corrosion and
    wear behavior of physical vapor deposition CrN coatings. Journal of
    Materials Engineering and Performance, 28, 2881-2891.
    [58] Wang, Y. X., Zhang, S., Lee, J. W., Lew, W. S., and Li, B. (2012).
    Influence of bias voltage on the hardness and toughness of CrAlN
    coatings via magnetron sputtering. Surface and Coatings
    Technology, 206(24), 5103-5107.
    [59] García-González, L., Hernández-Torres, J., Mendoza-Barrera, C.,
    Meléndez-Lira, M., García-Ramírez, P. J., Martínez-Castillo, J. and
    Espinoza-Beltrán, F. J. (2008). Relationship between crystalline
    structure and hardness of Ti-Si-NO coatings fabricated by dc
    sputtering. Journal of Materials Engineering and Performance, 17,
    580-585.119
    [60] Chaleix, L., and Machet, J. (1997). Study of the composition and of
    the mechanical properties of TiBN films obtained by DC magnetron
    sputtering. Surface and Coatings technology, 91(1-2), 74-82.
    [61] Nowotny, H., Benesovsky, F., Brukl, C., and Schob, O. (1961). Die
    Dreistoffe: Titan—Bor—Kohlenstoff und Titan—Bor—
    Stickstoff. Monatshefte für Chemie und verwandte Teile anderer
    Wissenschaften, 92, 403-414.
    [62] Lenz, B., Hasselbruch, H., Grossmann, H., and Mehner, A. (2020).
    Application of CNN networks for an automatic determination of
    critical loads in scratch tests on aC: H: W coatings. Surface and
    Coatings Technology, 393, 125764.
    [63] Bachani, S. K., Wang, C. J., Lou, B. S., Chang, L. C., and Lee, J. W.
    (2021). Fabrication of TiZrNbTaFeN high-entropy alloys coatings
    by HiPIMS: Effect of nitrogen flow rate on the microstructural
    development, mechanical and tribological performance, electrical
    properties and corrosion characteristics. Journal of Alloys and
    Compounds, 873, 159605.
    [64] Chen, X., Du, Y., and Chung, Y. W. (2019). Commentary on using
    H/E and H3/E2 as proxies for fracture toughness of hard
    coatings. Thin Solid Films, 688, 137265.

    QR CODE