簡易檢索 / 詳目顯示

研究生: 黃暘霽
Yang-Ji Huang
論文名稱: 鎂合金粉末製程對高熵合金顆粒強化鎂基複合材料機械性質之影響
Effect of Preparation of Mg Alloy Powder on Mechanical Properties of High Entropy Alloy Particle Reinforced Magnesium-Based Composites
指導教授: 丘群
Chun Chiu
口試委員: 陳士勛
Shih-Hsun Chen
林新智
Hsin-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 200
中文關鍵詞: AZ91 鎂合金高熵合金球磨法火花電漿燒結機械性質
外文關鍵詞: AZ91 magnesium alloy, high entropy alloy, ball milling, spark plasma sintering, mechanical properties
相關次數: 點閱:308下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將10 wt.% Al0.5CoCrFeNi2高熵合金粉末與AZ91鎂合金粉末混合,透過火花電漿燒結法製備鎂基複合材料燒結錠,探討氣體霧化法與球磨法兩種鎂合金粉末製程對高熵合金顆粒強化鎂基複合材料機械性質之影響。
    結果表明,高熵粉末的添加會導致霧化法粉末燒結錠之孔隙率些微上升,而球磨法粉末燒結錠之孔隙率下降。使用霧化法及球磨法粉末的AZ91燒結錠之硬度值分別為83 HV及157 HV,與霧化法相比,球磨法製備之AZ91燒結錠具有相當高的硬度。使用霧化法及球磨法粉末的AZ91燒結錠在添加高熵粉末後硬度分別提升至101 HV與167 HV,顯示高熵粉末顆粒有助於提升材料硬度。壓縮試驗結果顯示,和未添加高熵粉末的AZ91燒結錠相比,添加高熵粉末之霧化法AZ91燒結錠在360 °C與460 °C兩個燒結溫度下,降伏抗壓強度分別由214 MPa與193 MPa提升至220 MPa與209 MPa,極限抗壓強度則分別由346 MPa與316 MPa提升至383 MPa與334 MPa。而使用AZ91球磨粉末的燒結錠由於內部孔隙率較高在壓縮初期裂縫擴展,導致材料破裂,和使用霧化法的燒結錠相比,壓縮性質皆不理想。添加高熵粉末的AZ91燒結錠經過長時間熱處理,所添加之高熵粉末成份發生改變,粉末中的Al與Ni形成金屬化合物散佈在基材以及高熵粉末周圍。


    In this study, 10 wt.% Al0.5CoCrFeNi2 high entropy alloy powder was mixed with AZ91 magnesium alloy powder to prepare magnesium-based composite sintered ingots by spark plasma sintering and the effects of two magnesium alloy powder processes, gas atomization method and ball milling method, on the mechanical properties of the high-entropy alloy particle reinforced magnesium-based composite materials were investigated.
    The results showed that the addition of high entropy powder caused a slight increase in the porosity of the atomized powder sintered ingots and a decrease in the porosity of the ball-milled powder sintered ingots. The hardness of AZ91 sintered ingots using atomized and ball-milled powders were 83 HV and 157 HV, respectively, and the hardness of AZ91 sintered ingots prepared by the ball-milled method was quite high compared to the atomized method. The hardness of AZ91 sintered ingots with atomized and ball-milled powders increased to 101 HV and 167 HV after the addition of high entropy powder, respectively, indicating that the high entropy powder particles helped to increase the hardness of the material. Compared with the sintered ingots without the addition of high entropy powder, the atomized AZ91 sintered ingots with the addition of high entropy powder showed an increase in the yield compressive strength from 214 MPa and 193 MPa to 220 MPa and 209 MPa at 360 °C and 460 °C, respectively, and an increase in the ultimate compressive strength from 346 MPa and 316 MPa to 383 MPa and 334 MPa, respectively. The sintered ingots with AZ91 ball-milled powder had unsatisfactory compressive properties than those sintered ingots with atomized powder due to the high internal porosity, which led to cracking at the beginning of compression. When the AZ91 sintered ingot with high entropy powder after heat treatment for a long time, the composition of the high entropy powder changes, and the Al and Ni in the powder form intermetallic compounds that are dispersed around the high entropy powder and the matrix.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 XI 表目錄 XVIII 第一章 前言 1 第二章 文獻回顧 4 2.1 鎂與鎂合金的介紹及優缺點 4 2.1.1 鎂的介紹 4 2.1.2 鎂與鎂合金的優缺點 4 2.2 鎂合金命名規則 7 2.3 改善金屬鎂性質的方法 9 2.3.1 製程細化晶粒 9 2.3.2 合金化 24 2.4 材料強化機制 26 2.4.1 細晶粒尺寸強化 26 2.4.2 應變硬化 29 2.4.3 固溶強化 29 2.4.4 析出硬化 30 2.4.5 散佈強化 33 2.4.6 荷載傳遞效應 35 2.4.7 熱膨脹係數差異 35 2.5 鎂基複合材料 37 2.5.1 鎂基復合材料介紹 37 2.5.2 添加SiC之鎂基複合材料 38 2.5.3 添加Al2O3之鎂基複合材料 40 2.5.4 添加金屬玻璃之鎂基複合材料 42 2.5.5 添加高熵合金之鎂基複合材料 42 2.6 粉末冶金 43 2.6.1 粉末冶金之優點 43 2.6.2 粉末製備 44 2.6.3 燒結方法 48 2.7 高熵合金 54 2.7.1 高熵合金介紹 54 2.7.2 高熵合金四大效應 54 2.7.3 AlxCoCrFeNiy系高熵合金 56 2.8 研究動機 59 第三章 實驗方法 60 3.1 實驗材料 60 3.2 實驗流程 61 3.3 球磨製程 63 3.4 火花電漿燒結製程 65 3.5 熱處理製程 66 3.6 分析儀器 67 3.6.1 雷射粒徑分析儀 67 3.6.2 光學顯微鏡 68 3.6.3 場發射掃描式電子顯微鏡 69 3.6.4 場發射雙束型聚焦離子束顯微鏡 71 3.6.5 場發射穿透式電子顯微鏡 73 3.6.6 X光繞射儀 74 3.6.7 微克式硬度機 78 3.6.8 奈米壓痕機 79 3.6.9 落地型動態材料試驗機 80 第四章 結果與討論 81 4.1 原材分析 81 4.1.1 AZ91霧化法粉末 81 4.1.2 AZ91塊材與銑屑 88 4.1.3 BM-AZ粉末 94 4.1.4 Al0.5CoCrFeNi2霧化法粉末 99 4.1.5 粉末粒徑與晶粒尺寸分析 102 4.1.6 粉末硬度分析 106 4.2 燒結錠分析 109 4.2.1 A-AZ & A-AZ-HEA燒結錠 109 4.2.2 A-AZ-460 & A-AZ-HEA-460燒結錠 115 4.2.3 BM-AZ & BM-AZ-HEA燒結錠 125 4.2.4 BM-AZ-HEA-HT 135 4.2.5 晶粒尺寸分析 142 4.2.6 差排密度與微應變分析 143 4.2.7 硬度分析 146 4.2.8 孔隙率分析 149 4.2.9 壓縮試驗 154 4.3 討論 156 第五章 結論與未來展望 164 5.1 結論 164 5.2 未來展望 165 參考文獻 166

    [1] S. V. S. Prasad, S. B. Prasad, K. Verma, R. K. Mishra, V. Kumar and S. Singh, "The role and significance of Magnesium in modern day research-A review," Journal of Magnesium and Alloys, 2021 (In Press Corrected Proof).
    [2] Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen and F. Pan, "Research advances in magnesium and magnesium alloys worldwide in 2020, "Journal of Magnesium and Alloys, vol. 9, pp. 705-747, 2021.
    [3] M. K. Kulekci, "Magnesium and its alloys applications in automotive industry," The International Journal of Advanced Manufacturing Technology, vol. 39, pp. 851-865, 2008.
    [4] L. Wang, Y. Li, H. Zhang, Z. Zhang, Q. Yang, Q. Zhang, H. Wan, W. Cheng, K. S. Shin and M. Vedani, "Review: Achieving enhanced plasticity of magnesium alloys below recrystallization temperature through various texture control methods," Journal of Materials Research and Technology, vol. 9, pp. 12604-12625, 2020.
    [5] N. Saheb, Z. Iqbal, A. Khalil, A. S. Hakeem, N. A. Aqeeli, T. Laoui, A. A. Qutub and R. Kirchner, "Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review," Journal of Nanomaterials, vol. 2012, Article ID 983470, 2012.
    [6] S. N. Sharma, N. Alam and B. C. Ray, "Fundamentals of Spark Plasma Sintering (SPS): An Ideal Processing Technique for Fabrication of Metal Matrix Nanocomposites," Spark Plasma Sintering of Materials pp. 21-59, 2019.
    [7] M. H. Tsai and J. W. Yeh, "High-Entropy Alloys: A Critical Review," Materials Research Letters, vol. 2, no. 3, pp. 107-123, 2014.
    [8] J. W. Yeh, "Recent progress in high-entropy alloys," Science des Materiaux, vol. 31, no. 6; pp. 633-648, 2006.
    [9] M. C. Gao, J. W. Yeh, P. K. Liaw and Y. Zhang, "High-entropy alloys Fundamentals and applications", 2016.
    [10] Y. F Kao, T. J. Chen, S. K. Chen and J. W. Yeh "Microstructure and mechanical property of as-cast, homogenized, and deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys," Journal of Alloys and Compounds," vol. 488, pp. 57-64, 2009.
    [11] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw and Z. P. Lu, "Microstructures and properties of high-entropy alloys", Progress in Materials vol. 61, pp, 1-93, 2014.
    [12] P. R. Rios, Fulvio, S. Jr and H. R. Z. Sandim, "Nucleation and Growth During Recrystallization," Materials Research, vol. 8, no. 3, pp. 225-238, 2005.
    [13] P. Mansoor and S. M. Dasharath, "A review paper on magnesium alloy fabricated by severe plastic deformation technology and its effects over microstructural and mechanical properties," Materials Today: Proceedings, vol 45, part 1, pp. 356-364, 2021.
    [14] A. Raja, P. Biswas and V. Pancholi, "Effect of layered microstructure on the superplasticity of friction stir processed AZ91 magnesium alloy," Materials Science and Engineering: A, vol. 725, pp 492-502, 2018.
    [15] A. Azushima, R. Kopp, A. Korhonen and D.Y. Yang, "Severe plastic deformation (SPD) processes for metals," CIRP Annals - Manufacturing Technology, vol. 57, pp. 716-735, 2008.
    [16] M. Vishnoi, S. S. Murugan, A.N.V. Kumar, T. G. Mamatha, "Analysis of plastic deformation of Al6063, Magnesium AZ91C and commercially used Titanium alloys using ECAP," Materials Today: Proceedings, vol. 25, part 4, pp. 710-718, 2020.
    [17] A. Ghosh and M. Ghosh, "3D FEM simulation of Al-Zn-Mg-Cu alloy during multi-pass ECAP with varying processing routes," Materials Today Communications, vol. 26, pp. 102-112, 2021.
    [18] Y. Chang and D. M. Kochmann, "A variational constitutive model for slip-twinning interactions in hcp metals: application to single- and polycrystalline magnesium, " International Journal of Plasticity, vol. 73, pp. 39-61, 2015.
    [19] S. Spigarelli, M. Cabibbo, E. Evangelista, M. Talianker and V. Ezersky, "Analysis of the creep behaviour of a thixoformed AZ91 magnesium alloy," Materials Science and Engineering: A, vol. 289, no. 30, pp. 172-181, 2000.
    [20] K. K. Alaneme and E. A. Okotete, "Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments," Journal of Magnesium and Alloys, vol. 5, pp. 460-475, 2017
    [21] J. Thornby, A. Harris, A. Bird, B. Beake, V. B. Manakari, M. Gupta and M. Haghshenas, "Micromechanics and indentation creep of magnesium carbon nanotube nanocomposites: 298K–573K,"Materials Science and Engineering: A, vol. 801, no. 13, Article ID 140418, 2021.
    [22] X. Zhou and H. Yan, "Effects of the β1′ precipitates on mechanical and damping properties of ZK60 magnesium alloy," Materials Science and Engineering: A, vol. 804, Article ID 140730, 2021.
    [23] A. Kania, R. Nowosielski, A. G. Mucha and R. Babilas, "Mechanical and Corrosion Properties of Mg-Based Alloys with Gd Addition," Materials, vol. 12, no. 11, 1775, 2019.
    [24] A. International, "Standard Practice for Temper Designations of Magnesium Alloys, Cast and Wrought," ASTM Standard B275, 2008.
    [25] J. H. Schneibel and M Heilmaier, "Hall¬Petch Breakdown at Elevated Temperatures," Materials Transactions, vol. 55, no. 1, pp. 44- 51, 2014.
    [26] P. R. Rios, Fulvio, S. Jr and H. R. Z. Sandim, "Nucleation and Growth During Recrystallization," Materials Research, vol. 8, no. 3, pp. 225-238, 2005.
    [27] R. Z. Valiev and I. V. Alexandrov, "Nanostructured materials from severe plastic deformation, " Nanostructured Materials, vol. 12, pp. 35-40, 1999.
    [28] P. Mansoor and S. M. Dasharath, "A review paper on magnesium alloy fabricated by severe plastic deformation technology and its effects over microstructural and mechanical properties," Materials Today: Proceedings, vol 45, part 1, pp. 356-364, 2021.
    [29] A. Raja, P. Biswas and V. Pancholi, "Effect of layered microstructure on the superplasticity of friction stir processed AZ91 magnesium alloy," Materials Science and Engineering: A, vol. 725, pp 492-502, 2018.
    [30] K. M. Agarwal, R. K. Tyagi, V. K. Chaubey and A. Dixit, "Comparison of different methods of Severe Plastic Deformation for grain refinement, " Materials Science and Engineering, vol. 691, Article ID 012074, 2019.
    [31] A. Azushima, R. Kopp, A. Korhonen and D.Y. Yang, "Severe plastic deformation (SPD) processes for metals," CIRP Annals - Manufacturing Technology, vol. 57, pp. 716-735, 2008.
    [32] A. P. Zhilyaev and T. G. Langdon, "Using high-pressure torsion for metal processing: Fundamentals and applications," Progress in Materials Science, vol. 53, pp. 893-979, 2008.
    [33] R. Z. Valiev, A. V. Korznikov and R. R. Mulyukov, "Structure and properties of ultrafine-grained materials produced by severe plastic deformation," Materials Science and Engineering: A, vol. 168, pp. 141-148, 1993.
    [34] M. Mabuch, H. Iwasaki, K. Yanase and K. Higashi, "Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE, " Scripta Materialia, vol. 36, pp. 681-686, 1997.
    [35] K. M. Agarwal, R. K. Tyagi, V. K. Chaubey and A. Dixit, "Comparison of different methods of Severe Plastic Deformation for grain refinement, " Materials Science and Engineering, vol. 691, 2019.
    [36] L. S. Toth and C. Gu, "Ultrafine-grain metals by severe plastic deformation, " Materials Characterization, vol. 92, pp. 1-14, 2014.
    [37] M. Vishnoi, S. S. Murugan, A.N.V. Kumar and T.G. Mamatha, "Analysis of plastic deformation of Al6063, Magnesium AZ91C and commercially used Titanium alloys using ECAP," Materials Today: Proceedings, vol. 25, part 4, pp. 710-718, 2020.
    [38] A. Ghosh and M. Ghosh, "3D FEM simulation of Al-Zn-Mg-Cu alloy during multi-pass ECAP with varying processing routes," Materials Today Communications, vol. 26, pp. 102-112, 2021.
    [39] R. Z. Valiev and T. G. Langdon, "Principles of equal-channel angular pressing as a processing tool for grain refinement," Progress in Materials Science. vol. 51, pp. 881-981, 2006.
    [40] A. Muralidhar, S. Narendranath and H. S. Nayaka, "Effect of equal channel angular pressing on AZ31 wrought magnesium alloys," Journal of Magnesium and Alloys, vol. 1, pp. 336-340, 2013.
    [41] G. M. Naik, G. D. Gote, S. Narendranath and S. S. S. "Kumar, "Effect of grain refinement on the performance of AZ80 Mg alloys during wear and corrosion," Advances in Materials Research, vol. 7, no. 2, pp. 105-118, 2018.
    [42] F. X. Ming and A. T. Tao, "Microstructure evolution and mechanical behavior of AZ31 Mg alloy processed by equal-channel angular pressing," Transactions of Nonferrous Metals Society of China, vol. 19, pp. 293-298, 2009.
    [43] A. R. Eivani, M. Mehdizade, S. Chabok and J. Zhou, "Applying multi-pass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy, " Journal of Materials Research and Technology, vol. 12, pp. 1946-1957, 2021.
    [44] F. M. Khan, G. M. Karthik, S. K. Panigrahi and G. D. J. Ram, "Friction stir processing of QE22 magnesium alloy to achieve ultrafine- T grained microstructure with enhanced room temperature ductility and texture weakening, " Materials Characterization, vol. 147, pp. 365-378, 2019.
    [45] A. P. Zhilyaev and T. G. Langdon, "Using high-pressure torsion for metal processing: Fundamentals and applications," Progress in Materials Science, vol. 53, pp. 893-979, 2008.
    [46] H. J. Lee, B. Ahn, M. Kawasaki and T. G. Langdon, "Evolution in hardness and microstructure of ZK60A magnesium alloy processed by high-pressure torsion, " Journal of Materials Research and Technology, vol. 4, pp. 18-25, 2015.
    [47] S.A. Torbati-Sarraf, S. Sabbaghianrad, R.B. Figueiredo and T.G. Langdon, "Orientation imaging microscopy and microhardness in a ZK60 magnesium alloy processed by high- pressure torsion, " Journal of Alloys and Compounds, vol. 712, pp. 185-193, 2017.
    [48] S. A. Torbati-Sarraf and T. G. Langdon, "Properties of a ZK60 magnesium alloy processed by high-pressure torsion," Journal of Alloys and Compounds, vol. 613, pp. 357-363, 2014.
    [49] R. B. Figueiredo and T. G. Langdon, "Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP, " Materials Science and Engineering: A, vol. 501, pp. 105-114, 2009.
    [50] Y. T. Zhu, T. C. Lowe and T. G. Langdon, "Performance and applications of nanostructured materials produced by severe plastic deformation," Scripta Materialia vol. 51, pp. 825-830, 2004.
    [51] Y. Cheng, Z. Cui, L. Cheng, D. Gong and W. Wang, "Effect of particle size on densification of pure magnesium during spark plasma sintering," Advanced Powder Technology, vol. 28, pp. 1129-1135, 2017.
    [52] K. N. Braszczyńska-Malik, "Precipitates of γ–Mg17Al12 Phase in AZ91 Alloy, " Magnesium Alloys - Design, Processing and Properties, 2010.
    [53] Y. C. Zhao, M. C. Zhao, R. Xu, L. Liu, J. X. Tao, C. Gao, C. Shuai and A. Atrens, "Formation and characteristic corrosion behavior of alternately lamellar arranged α and β in as-cast AZ91 Mg alloy," Journal of Alloys and Compounds, vol. 770, pp. 549-558, 2019.
    [54] S. You, Y. Huang, K. U. Kainer and N. Hort, "Recent research and developments on wrought magnesium alloys," Journal of Magnesium and Alloys, vol. 5, no. 3, pp. 239-253, 2017.
    [55] O. Lunder, J. E. Lein, T. K, Aune and K. Nisancioglu, "The role of magnesium aluminuim (Mg17Al12) phase in the corrosion of magnesium alloy AZ91," Corrosion, vol. 45: pp. 741-748, 1989.
    [56] R. Ambat, N. N. Aung and W. Zhou, "Evaluation of microstructure effects on carrion behavior of AZ91D magnesium," Corrosion Science, vol. 42, no. 8, pp. 1433-1455, 2000.
    [57] M. Ali, M. A. Hussein and N. A. Aqeeli, "Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties," Journal of Alloys and Compounds, vol. 792, pp. 1162-1190, 2019.
    [58] R.L Liu, Z.R. Zeng, J.R. Scully, G. Williams and N. Birbilis, "Simultaneously improving the corrosion resistance and strength of magnesium via low levels of Zn and Ge additions," Corrosion Science, vol. 140, pp. 18-29, 2018.
    [59] J. Metayer, B Ye, W. Guo, Q.D Wamg, H Zhou and F. Mollet, "Microstructure and mechanical properties of Mg–Si alloys processed by cyclic closed-die forging," Transactions of Nonferrous Metals Society of China, vol. 24, pp. 66-75, 2014.
    [60] N. Balasubramani, G. Wang, M. A. Easton, D. H. S. John and M. S. Dargusch, "A comparative study of the role of solute, potent particles and ultrasonic treatment during solidification of pure Mg, Mg–Zn and Mg–Zr alloys, " Journal of Magnesium and Alloys, vol. 9, pp. 829-839, 2021.
    [61] A. Kielbus, T. Rzychon, "Mechanical and creep properties of Mg-4Y-3RE and Mg-3Nd-1Gd magnesium alloy," Procedia Engineering, vol. 10, pp. 1835-1840, 2011.
    [62] L. Zhang, J. Zhang, C. Xu, S. Liu, Y. Jiao, L. Xu, Y. Wang, J. Meng, R. Wu and M. Zhang, "Investigation of high-strength and superplastic Mg–Y–Gd–Zn alloy," Materials & Design, vol. 61, pp. 168-176, 2014.
    [63] G. L. Makar and J. Kruger, "Corrosion of magnesium," International Materials Reviews, vol. 38, pp. 138–153, 1993.
    [64] W. D. Callister. Fundamentals of Materials Science and Engineering, 2nd ed. Wiley & Sons. pp. 252.
    [65] Y. Dai and Q. P. Kong, "On the Physical Origin of Equicohesive Temperature for Creep," Strength of Metals and Alloys (ICSMA 8), vol. 2, pp. 959-964, 1989.
    [66] M. H. Korayem, R. Mahmudi and W. J. Poole, "Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles," Materials Science and Engineering: A, vol. 519, no. 1-2, pp. 198-203, 2009.
    [67] W. Yuan, S. K. Panigrahi, J. Q. Su and R. S. Mishra, "Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy," Scripta Materialia, vol. 65, no. 11, pp. 994-997, 2011.
    [68] S. Q. Siu, H. C. Zheng, Z. Wu, Y. W. Zhang and D. J. Srolovitz, "The inverse hall–petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis, " Journal of the Mechanics and Physics of Solids, vol. 88, pp. 252-266, 2016.
    [69] S. Jakob, D. Tolla, D. Francesco and K. W. Jacobsen, "Softening of nanocrystalline metals at very small grain sizes," Nature, vol. 391, pp. 561–563, 1998.
    [70] S. Jakob and K. W. Jacobsen, "A Maximum in the Strength of Nanocrystalline Copper, " American Association for the Advancement of Science, vol. 301, no. 5638, pp. 1357-1359, 2003.
    [71] J. Han, "The transition from an inverse pseudo Hall-Petch to a pseudo Hall-Petch behavior in nanocrystalline graphene," Carbon, vol. 161, pp. 542-549, 2020.
    [72] M. Xu, W. Yang, J. Liang, Y. Meng and L. Zheng, "Experimental study on the correlation between intermediate temperature embrittlement and equi-cohesive temperature, " Journal of Alloys and Compounds vol. 610, pp. 288-293, 2014.
    [73] F. Naghdi, R. Mahmudi, J.Y. Kang and H.S. Kim, "Contributions of different strengthening mechanisms to the shear strength of an extruded Mg–4Zn–0.5Ca alloy," Philosophical Magazine, vol. 95, no.31, pp. 3452-3466, 2015.
    [74] R. Abbaschian and R. E. Reed-Hill, "Physical Metallurgy Principles," 2009.
    [75] S. Pasebani, Aniket K. Dutt, J. Burns, I. Charit and R. S. Mishra, "Oxide dispersion strengthened nickel based alloys via spark plasma sintering," Materials Science and Engineering: A, vol. 630, pp. 155-169, 2015.
    [76] Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa and T. Suzuki, "Solid solution hardening of Ni3Al with ternary additions," Transactions of the Japan institute of metals, vol. 27, no. 9, pp. 648-655, 1986.
    [77] Q. Yang, F. Bu, X. Qiu, Y. Li, W. Li, W. Sun, X. Liu and J. Meng, "Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy," Journal of Alloys and Compounds, vol. 665, pp. 240-250, 2016.
    [78] C. R. Hutchinson, J. F. Nie and S. Gorsse, "Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy," Metallurgical and Materials Transactions A, vo. 36, pp. 2093-2105, 2005.
    [79] A. M. A. Mohamed, F. H. Samuel and C. Frank, "A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys," Heat Treatment-Conventional and Novel Applications, vol. 210, pp. 1249-1259, 2012.
    [80] S. Kilic, I. Kacar, M. Sahin, F. Ozturk and O. Erdem, "Effects of Aging Temperature, Time and Pre-Strain on Mechanical Properties of AA7075 Materials Research-ibero-american," Journal of Materials, vol. 22, no. 5, 2019.
    [81] S. J. Andersen, C. D. Marioara, J. Friis, S. Wenner and R. Holmestad, "Precipitates in aluminum alloys, " Advances in Physics: X, vol. 3, no. 1, Article ID 1479984, 2018.
    [82] K. S. Prasad, N. E. Prasad and A. A. Gokhale, "Microstructure and Precipitate Characteristics of Aluminum–Lithium Alloys," Aluminum-lithium Alloys, Processing, Properties, and Applications, pp. 99-137, 2014.
    [83] A. Somoza and A. Dupasquier, "Vacancies in aluminum and solute-vacancy interactions in aluminum alloys," Fundamentals of Aluminum Metallurgy, pp. 386-421, 2011.
    [84] M. Rooyen, J. A. S. Maartensdijk and E. J. Mittemeijer, "Precipitation of guinier-preston zones in aluminum- magnesium; a calorimetric analysis of liquid-Quenched and solid-Quenched alloys," Metallurgical Transactions A, vol. 19, no. 10, pp. 2433–2443, 1988.
    [85] J. F. Nie, "Precipitation and Hardening in Magnesium Alloys," Metallurgical and Materials Transactions A, vol. 43, pp. 3891–3939, 2012.
    [86] H. Dieringa, "Applications: magnesium-based metal matrix composites (MMCs)," Fundamentals of Magnesium Alloy Metallurgy, pp. 317–341, 2013.
    [87] A. Bhaduri, "Tension," Mechanical Properties and Working of Metals and Alloys, vol. 264, pp. 3-94, 2018.
    [88] Q. Tang, T. Hoshino, S. Ukai, B. Leng, S. Hayashi and Y. Wang, "Refinement of Oxide Particles by Addition of Hf in Ni-0.5 mass%Al-1 mass%Y2O3 Alloys," Materials Transactions, vol. 51, no. 11, pp. 2019-2024, 2010.
    [89] N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li and D.L. Chen, "Strengthening mechanisms in magnesium alloys containing ternary I, W and LPSO phases," Journal of Materials Science & Technology, vol. 34, no. 7, pp. 1110-1118, 2018.
    [90] Y. Yan, H. Zhang, J. Fan, L. Wang, Q. Zhang, M. Hou and B. Xu, "Improved mechanical properties of Mg matrix composites reinforced with Al and carbon nanotubes fabricated by spark plasma sintering followed by hot extrusion," Journal of Materials Research, vol. 31, no. 23, pp. 3745–3756, 2016.
    [91] S. Pasebani, A. K. Dutt, J. Burns, I. Charit and R. S. Mishra, "Oxide dispersion strengthened nickel based alloys via spark plasma sintering, " Materials Science and Engineering: A, vol. 630, pp. 155-169, 2015.
    [92] I. A. Ibrahim, F. A. Mohamed and E. J. Lavernia, "Particulate reinforced metal matrix composites - a review," Journal of Materials Science, vol. 26, no. 5, pp. 1137–1156, 1991.
    [93] A. Dey and K. M. Pandey, "Magnsium metal matrix composites - A review," Materials Science, vol. 42, pp. 58-67, 2015.
    [94] A. Luo, "Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites," Metallurgical and Materials Transactions A, vol. 26, no. 9, pp. 2445-2455, 1995.
    [95] H. Gleiter, "Nanocrystalline materials, " Progress in Materials Science, vol. 33, pp. 223-315, 1989.
    [96] D Hübler, A Ghasemi, R Riedel, C Fleck and S Kamrani, "Effect of hot isostatic pressing on densification, microstructure and nanoindentation behaviour of Mg–SiC nanocomposites," Journal of Materials Science, vol. 55, no. 24, pp. 10582-10592, 2020.
    [97] D. V. Dudina, K. Georgarakis, Y. Li, M. Aljerf, A. LeMoulec, A. R. Yavari and A. Inoue, "A magnesium alloy matrix composite reinforced with metallic glass," Composites Science and Technology, vol. 69, no. 15-16, pp. 2734-2736, 2009.
    [98] 張勛翔,「利用火花電漿燒結製程製備高熵合金粉末強化鎂基複合材料之機械性質研究」,國立臺灣科技大學機械工程系碩士論文,2020年。
    [99] N. Ciftci, N. Ellendt, E. S. Barreto, L. Mädler and V. Uhlenwinkel, "Increasing the amorphous yield of {(Fe0.6Co0.4)0.75B0.2Si0.05}96Nb4 powders by hot gas atomization," Advanced Powder Technology, vol. 29, pp. 380-385, 2018.
    [100] C. Si, X. Tang, X. Zhang, J. Wang and W. Wu, "Characteristics of 7055Al alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process," Materials & Design, vol. 118, pp. 66-74, 2017.
    [101] C. Suryanarayana, "Mechanical alloying and milling," Progress in Materials Science, vol. 46, pp. 1-184, 2001.
    [102] D.B. Witkin and E.J. Lavernia, "Synthesis and mechanical behavior of nanostructured materials via cryomilling," Progress in Materials Science, vol. 51, pp. 1-60, 2006.
    [103] S. Moustafa, W. Daoush, A. Ibrahim and E. Neubaur, "Hot Forging and Hot Pressing of AlSi Powder Compared to Conventional Powder Metallurgy Route," Materials Sciences and Applications, vol. 2, no. 8, pp. 1127-1133, 2011.
    [104] Z.H. Zhang, F.C. Wang, S.K. Lee, Y. Liu, J.W. Cheng and Y. Liang, "Microstructure characteristic, mechanical properties and sintering mechanism of nanocrystalline copper obtained by SPS process," Materials Science and Engineering: A, vol. 523, pp. 134-138, 2009.
    [105] M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain and T. Grosdidier, "Microstructure and mechanical properties of AZ91 magnesium alloy developed by Spark Plasma Sintering," Acta Materialia, vol. 119, pp. 55-67, 2016.
    [106] W. R. Wang, W. L. Wang, S. C. Wang, Y. C. Tsai, C. H. Lai and J. W. Yeh, "Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys", Intermetallics, vol. 26, pp. 44-51, 2012.
    [107] P. F. Zhou, D. H. Xiao, Z. Wu and X. Q. Ou, "Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders," Materials Science and Engineering: A, vol. 739, pp. 86-89, 2019.
    [108] J. T. Liang, K.C. Cheng, Y. C. Chen, S. M. Chiu, C. Chiu, J. W. Lee and S. H. Chen, "Comparisons of plasma-sprayed and sputtering Al0.5CoCrFeNi2 high-entropy alloy coatings," Surface and Coatings Technology, vol. 403, 2020.
    [109] Y. C. Agrawal and H. C. potismith, "Laser diffraction particle sizing in STRESS," vol.14, no. 11, pp. 1101-1121, 1994.
    [110] J. Goldstein, J. A. GOLDSTEIN, Lyman, D.E. Newbury and D. C. Joy "Scanning Electron Microscopy and X-Ray Microanalysis", 2003.
    [111] Julenkarlasaray, " Bragg legea.jpg, " Wikimedia Commons, the free media repository, 2014.
    [112] J.Epp, "X-ray diffraction (XRD) techniques for materials characterization," Materials Characterization Using Nondestructive Evaluation (NDE) Methods, pp. 81-124, 2016.
    [113] V.D. Mote, Y. Purushotham and B. N. Dole, "Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles," Journal of Theoretical and Applied Physics, vol. 6, no. 6, pp. 1-8, 2012.
    [114] A. K. Zak, W. H. A. Majid, M. E. Abrishami and R. Yousefi," X-ray analysis of ZnO nanoparticles by Williamsone-Hall and size strain plot methods," Solid State Sciences, vol. 13, pp. 251-256, 2011.
    [115] G. K. Williamson and R. E. Smallman, "Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum," Philosophical Magazine, vol. 8, no. 1, pp. 34-46, 1956.
    [116] Y. H. Zhao, H. W. Sheng and K. Lu, "Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition, Acta Materialia," vol. 49, pp. 365-375, 2001
    [117] J. Medved, P. Mrvar, and M. Vončina, "Oxidation Resistance of AM60, AM50, AE42 and AZ91 magnesium alloy," Magnesium alloys-corrosion and surface treatments, pp. 2-28. 2011.
    [118] M. N. Khan, "Solidification Study of Commercial Magnesium Alloys," 2009.
    [119] A. Takeuchi and A. Inoue, "Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys," Intermetallics, vol. 18, no. 9, pp. 1779-1789, 2010.
    [120] D. S. Prasad, C. Shoba and N. Ramanaiah, "Investigations on mechanical properties of aluminum hybrid composites," Journal of Materials Research and Technology, vol. 3, pp. 79-85, 2014.
    [121] G. Tosun and M. Kurt, "The porosity, microstructure, and hardness of Al-Mg composites reinforced with micro particle SiC/Al2O3 produced using powder metallurgy," Composites Part B: Engineering, vol. 174, Article ID 106965, 2019.
    [122] B. S. Murty, M. Moban and S. Ranganathan, "Nanocrystalline phase formation and extension of solid solubility by mechanical alloying in Ti-based system," Nanostructured Materials, vol. 3, pp.459-467, 1993.
    [123] E. Zhou, C. Suryanarayana and F. H. Froes, "Effect of premilling elemental powders on solid solubility extension of magnesium in titanium by mechanical alloying," Material Letters, vol. 23, pp. 27-31, 1995.
    [124] P. J. Desre, "On the nanocrystalline to glass transition during ball milling," Nanostructured Materials, vol. 4, no. 8, pp. 957-963, 1994.
    [125] W. Cui, S. Karnati, X. Zhang, E. Burns and F. Liou, "Fabrication of AlCoCrFeNi High-Entropy Alloy Coating on an AISI 304 Substrate via a CoFe2Ni Intermediate Layer," Entropy, vol. 21, no. 2, pp. 509-518, 2019.
    [126] Yunzi Liu, Jian Chen, Zhao Li, Xianhui Wang, Peng Zhang and Jiangnan Liu, "AlCoCrFeNi high entropy alloy reinforced Cu-based composite with high strength and ductility after hot extrusion," Vacuum, vol. 184, Article ID 109882, 2021.

    無法下載圖示 全文公開日期 2026/09/15 (校內網路)
    全文公開日期 2026/09/15 (校外網路)
    全文公開日期 2026/09/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE