簡易檢索 / 詳目顯示

研究生: 高德軒
De-Hsuan Kao
論文名稱: 製程參數對鉻矽碳氮薄膜結構及性質的影響
Influences of experimental parameter on the microstructure and mechanical properties of Cr-Si-C-N thin films
指導教授: 王朝正
Chaur-jeng Wang
口試委員: 李志偉
Jyh-wei Lee
郭俞麟
Yu-lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 135
中文關鍵詞: CrSiCN薄膜脈衝直流磁控濺鍍四甲基矽烷
外文關鍵詞: CrSiCN thin film, pulsed DC reactive magnetron sputtering, tetramethylsilane
相關次數: 點閱:181下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用脈衝直流磁控濺鍍系統在200℃及400℃二種環境下鍍製出兩個系列共10批Cr-Si-C-N奈米複合薄膜,鍍製時通入四甲基矽烷(TMS)為前驅物作為薄膜內矽與碳的來源,在製程中逐漸提升TMS流量(5、10、15、20、30 sccm)以觀察不同矽與碳含量對於Cr-Si-C-N奈米複合薄膜之微結構、機械性質及耐蝕能力之影響。由XRD晶相分析結果可以發現在TMS流量小於15 sccm時薄膜皆為FCC之CrN結構,隨著TMS流量的增加,薄膜逐漸形成非晶之結構,到了TMS流量微30 sccm時薄膜主要以非晶碳結構為主。薄膜之粗糙度介於1.9-5.9 nm,當微量之矽與碳含量固溶於CrN晶粒結構造成固溶強化使硬度上升,在5 sccm時固溶強化效果為最佳且C1及T1之硬度分別達到23.5及27.5 Gpa,在附著性試驗分析中可以觀察到除了T1(1.1 at.%Si,8.5 at.%C)有著較佳的附著性。在0.5M之硫酸水溶液做電化學腐蝕試驗中可以觀察到Cr-Si-C-N奈米複合薄膜都有著比SUS 420不鏽鋼更加的抗腐蝕能力,綜合上述結果可以發現在適當的TMS流量下,可以得到擁有不錯硬度及附著性,以及同時擁有極佳抗腐蝕能力之薄膜,在工業用加工刀具、模具之保護鍍膜都具有極高的應用潛力。


    The chromium nitride thin film have a good mechanical properties and oxidation resistance. but the drawback is the slightly lower hardnessthen other hard coatings. the concept of nanocomposite thin films is employed by adding silicon and carbon to enhanced microstructures, mechanical properties and corrosion resistance, In this study, ten CrSiCN nanacomposite thin films with various TMS flow rate were fabricated by a pulsed DC reactive magnetron sputtering system
    The FCC structure of CrN was observed for the coating under 15 sccm TMS flow rate by XRD phase analysis. With higher TMS flow rate, amorphous structure was found. The coating with 30 sccm TMS flow rate exibite the Diamond-like carbon structure. The hardness decreased with increasing TMS contents in the Cr-Si-C-N coatings. The coatings with 1.1 at.% Si and 8.5 at.%C content exhibited a combination of high hardness because of the solid solution hardeness, based on the scratch adhesion strength test results, the Cr-Si-C-N coatings with 5 sccm TMS flow rate at 200℃ has the best adhesion properties. It is found that the Cr-Si-C-N coating with porper Si and C content (1.1 at.%Si and 8.5 at.%C) at 200℃ has the best mechanical properity.The corrosion resistance was analyed by using the potentiostat in 0.5M H2SO4 aqueous solution. and the corrosion resistance of the thin films was improved as the highest TMS flow rate.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 3 第二章 文獻回顧 6 2.1 薄膜製程技術 6 2.1.1 濺鍍原理 6 2.1.2 磁控濺鍍系統 6 2.1.3 脈衝(Pulse)磁控濺鍍系統 8 2.1.4 反應性氣體濺鍍(Reactive Gas Sputtering) 9 2.1.5遲滯效應 10 2.2 奈米複合薄膜 12 2.2.1 奈米複合薄膜之分類 13 2.2.2 奈米金屬氮化物與硬質相之奈米複合薄膜 13 2.3 氮化鉻薄膜 16 2.3.1 氮化鉻薄膜特性 16 2.3.2 氮化鉻薄膜組成 16 2.4 氮化鉻矽與氮化鉻碳奈米複合薄膜 19 2.4.1 氮化鉻矽奈米複合薄膜強化機制 19 2.4.2 氮化鉻碳奈米複合薄膜強化機制 23 2.5 類鑽碳薄膜 25 2.5.1 類鑽碳薄膜特性 25 2.5.2 類鑽碳薄膜組成 25 2.6 四甲基矽烷之特性與應用 27 2.7 薄膜電化學腐蝕 27 2.7.1 電化學腐蝕測試法 28 2.7.1.1 開路電位(Open Circuit Potential) 29 2.7.1.2 Tafel 極化 29 2.7.1.3 循環極化(Cyclic Polarization) 29 第三章 實驗方法 31 3.1 實驗流程 31 3.2 實驗方法與步驟 34 3.2.1 基材試片前處理與四甲基矽烷之純化 34 3.2.2 實驗設備 36 3.2.3 實驗流程及製程參數 37 3.2.4 鍍膜製程 39 3.3 鍍膜性質分析 41 3.3.1 成份分析 41 3.3.2 表面與截面形貌分析 42 3.3.3 晶體結構分析 44 3.3.4 鍵結結構分析 46 3.3.5 硬度試驗 48 3.3.6 附著性試驗 49 3.3.6.1 刮痕試驗 49 3.3.6.2 HRC-DB試驗 52 3.3.7 磨耗試驗 54 3.3.8 電化學腐蝕檢測 56 第四章 結果與討論 58 4.1 成分分析 58 4.1.1 不同TMS流量對於C系列薄膜成分之影響 58 4.1.2遲滯效應對Cr-Si-C-N奈米複合薄膜成分之影響 59 4.2 晶相分析 64 4.3 化學鍵結分析 68 4.4 微結構分析 81 4.5 機械性質分析 99 4.5.1 硬度與彈性係數分析 99 4.5.2 磨耗性質分析 102 4.5.3 附著性分析 109 4.5.3.1 HRC-DB 附著性分析 109 4.5.3.2 刮痕試驗附著性分析 113 4.6 耐蝕能力分析 117 第五章 結論 123 參考文獻 125

    [1]V. Meille, "Review on methods to deposit catalysts on structured surfaces," Applied Catalysis A: General, vol. 315, pp. 1-17, 11/23/ 2006.
    [2]J. Chai, S. Shen, N. Miura, and D. Bergado, "Simple Method of Modeling PVD-Improved Subsoil," Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, pp. 965-972, 2001/11/01 2001.
    [3]P. J. Kelly and R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, vol. 56, pp. 159-172, 3// 2000.
    [4]V. Linss, S. E. Rodil, P. Reinke, M. G. Garnier, P. Oelhafen, U. Kreissig, et al., "Bonding characteristics of DC magnetron sputtered B–C–N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy," Thin Solid Films, vol. 467, pp. 76-87, 11/22/ 2004.
    [5]S. Ulrich, H. Ehrhardt, T. Theel, J. Schwan, S. Westermeyr, M. Scheib, et al., "Phase separation in magnetron sputtered superhard BCN thin films," Diamond and Related Materials, vol. 7, pp. 839-844, 6// 1998.
    [6]D. K. Merl, P. Panjan, M. Čekada, and M. Maček, "The corrosion behavior of Cr-(C,N) PVD hard coatings deposited on various substrates," Electrochimica Acta, vol. 49, pp. 1527-1533, 4/15/ 2004.
    [7]M. Nordin, M. Larsson, and S. Hogmark, "Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide," Surface and Coatings Technology, vol. 106, pp. 234-241, 8/4/ 1998.
    [8]S. PalDey and S. C. Deevi, "Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review," Materials Science and Engineering: A, vol. 342, pp. 58-79, 2/15/ 2003.
    [9]B. Rother and H. Kappl, "Results on the thermal stability of cathodic arc-deposited (Cr,B) N coatings," Surface and Coatings Technology, vol. 73, pp. 14-17, 7// 1995.
    [10]D. V. Shtansky, E. A. Levashov, A. N. Sheveiko, and J. J. Moore, "Synthesis and characterization of Ti-Si-C-N films," Metallurgical and Materials Transactions A, vol. 30, pp. 2439-2447, 09/01 1999.
    [11]A. Glaser, S. Surnev, F. P. Netzer, N. Fateh, G. A. Fontalvo, and C. Mitterer, "Oxidation of vanadium nitride and titanium nitride coatings," Surface Science, vol. 601, pp. 1153-1159, 2/15/ 2007.
    [12]S. Veprek, et. al, “Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa” Surf. Coat. Technol, vol. 152, pp. 133-134, 2000.
    [13]H. Pengfei, J. Bailing, Vacuum,vol. 85, pp. 994-998, 2011
    [14]E. Silva, M. Rebelo de Figueiredo, R. Franz, R. Escobar Galindo, C. Palacio, A. Espinosa,S. Calderon V., C. Mitterer, S. Carvalho, Surf. Coat. Technol. vol. 205, pp. 2134–2141, 2010
    [15]S.H. Yao, Y.L. Su, W.H. Kao, K.W. Cheng, Materials Letters, vol. 59,pp. 3230-3233, 2000
    [16]F. Cai, X. Huang, Q. Yang, R. Wei, D. Nagy, Surf. Coat. Technol. 205 (2010) 182–188
    [17] Z.-J. Liu, Y. H. Lu, and Y. G. Shen, "Grain growth in nanocomposite Ti–B–N films during deposition: The effect of amorphous phase precipitation," Journal of Materials Research, vol. 21, pp. 82-87, 2006.
    [17]S. Imamura, H. Fukui, A. Shibata, N. Omori, M. Setoyama, Surf. Coat.Technol. 202 (2007) 820-825
    [18]S.H. Yao, Y.L. Su, W.H. Kao, K.W. Cheng, Materials Letters 59 (2005) 3230-3233
    [19]F. Cai, X. Huang, Q. Yang, R. Wei, D. Nagy, Surf. Coat. Technol. 205 (2010) 182–188 [20] C. Rebholz, A. Leyland, P. Larour, C. Charitidis, S. Logothetidis, and A. Matthews, "The effect of boron additions on the tribological behaviour of TiN coatings produced by electron-beam evaporative PVD," Surface and Coatings Technology, vol. 116–119, pp. 648-653, 9// 1999.
    [20]楊明輝,「脈衝磁控濺鍍技術介紹」,工業材料雜誌,2006, 232, 91.
    [21]J. Vetter, R. Knaup, H. Dwuletzki, E.Schneidr, and S. Vogler, “Hard coatings for lubrication reduction in metal forming”, Surface and Coatings Technology, 86-87, pp. 739, 1996.
    [22]A. Matthews, "Developments in PVD tribological coatings (IUVSTA highlights seminar-vacuum metallurgy division)," Vacuum, vol. 65, pp. 237-238, 4/19/ 2002.
    [23]J. C. Caicedo, C. Amaya, L. Yate, O. Nos, M. E. Gomez, and P. Prieto, "Hard coating performance enhancement by using [Ti/TiN]n, [Zr/ZrN]n and [TiN/ZrN]n multilayer system," Materials Science and Engineering: B, vol. 171, pp. 56-61, 7/25/ 2010.
    [24]T. P. Mollart, J. Haupt, R. Gilmore, and W. Gissler, "Tribological behaviour of homogeneous Ti-B-N, Ti-B-N-C and TiN/h-BN/TiB2 multilayer coatings," Surface and Coatings Technology, vol. 86–87, Part 1, pp. 231-236, 12/1/ 1996.
    [25]J. E. Sundgren, "Structure and properties of TiN coatings," Thin Solid Films, vol. 128, pp. 21-44, 6/14/ 1985.
    [26]S. Zhang and W. Zhu, "TiN coating of tool steels: a review," Journal of Materials Processing Technology, vol. 39, pp. 165-177, 10// 1993.
    [27]W.-J. Chou, G.-P. Yu, and J.-H. Huang, "Deposition of TiN thin films on Si(100) by HCD ion plating," Surface and Coatings Technology, vol. 140, pp. 206-214, 6/1/ 2001.
    [28]B. E. Jacobson, R. Nimmagadda, and R. F. Bunshah, "Microstructures of TiN and Ti2N deposits prepared by activated reactive evaporation," Thin Solid Films, vol. 63, pp. 333-339, 11/1/ 1979.
    [29]J. E. Sundgren, B. O. Johansson, H. T. G. Hentzell, and S. E. Karlsson, "Mechanisms of reactive sputtering of titanium nitride and titanium carbide III: Influence of substrate bias on composition and structure," Thin Solid Films, vol. 105, pp. 385-393, 7/29/ 1983.
    [30]J. E. Sundgren, B. O. Johansson, and S. E. Karlsson, "Mechanisms of reactive sputtering of titanium nitride and titanium carbide I: Influence of process parameters on film composition," Thin Solid Films, vol. 105, pp. 353-366, 7/29/ 1983.
    [31]J. E. Sundgren, B. O. Johansson, S. E. Karlsson, and H. T. G. Hentzell, "Mechanisms of reactive sputtering of titanium nitride and titanium carbide II: Morphology and structure," Thin Solid Films, vol. 105, pp. 367-384, 7/29/ 1983.
    [32]J. Deng, J. Liu, J. Zhao, and W. Song, "Wear mechanisms of PVD ZrN coated tools in machining," International Journal of Refractory Metals and Hard Materials, vol. 26, pp. 164-172, 5// 2008.
    [33]D. Jianxin, L. Jianhua, Z. Jinlong, S. Wenlong, and N. Ming, "Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes," Wear, vol. 264, pp. 298-307, 2/4/ 2008.
    [34]G. Lopez and M. H. Staia, "High-temperature tribological characterization of zirconium nitride coatings," Surface and Coatings Technology, vol. 200, pp. 2092-2099, 12/21/ 2005.
    [35]A. Matthews, "Developments in PVD tribological coatings (IUVSTA highlights seminar-vacuum metallurgy division)," Vacuum, vol. 65, pp. 237-238, 4/19/ 2002.
    [36]J. C. Caicedo, C. Amaya, L. Yate, O. Nos, M. E. Gomez, and P. Prieto, "Hard coating performance enhancement by using [Ti/TiN]n, [Zr/ZrN]n and [TiN/ZrN]n multilayer system," Materials Science and Engineering: B, vol. 171, pp. 56-61, 7/25/ 2010.
    [37]T. P. Mollart, J. Haupt, R. Gilmore, and W. Gissler, "Tribological behaviour of homogeneous Ti-B-N, Ti-B-N-C and TiN/h-BN/TiB2 multilayer coatings," Surface and Coatings Technology, vol. 86–87, Part 1, pp. 231-236, 12/1/ 1996.
    [38]E. Budke, J. Krempel-Hesse, H. Maidhof, and H. Schussler, "Decorative hard coatings with improved corrosion resistance," Surface and Coatings Technology, vol. 112, pp. 108-113, 2// 1999.
    [39]X. Y. Li, G. B. Li, F. J. Wang, T. C. Ma, D. Z. Yang, and Y. C. Zhu, "Investigation on properties of ceramic coatings of ZrN," Vacuum, vol. 43, pp. 653-656, 5// 1992.
    [40]D. Pilloud, A. S. Dehlinger, J. F. Pierson, A. Roman, and L. Pichon, "Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics," Surface and Coatings Technology, vol. 174–175, pp. 338-344, 9// 2003.
    [41]F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. Lanceros-Mendez, J. A. Mendes, et al., "Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films," Surface and Coatings Technology, vol. 191, pp. 317-323, 2/21/ 2005.
    [42]P. Zeman, R. Čerstvy, P. H. Mayrhofer, C. Mitterer, and J. Musil, "Structure and properties of hard and superhard Zr–Cu–N nanocomposite coatings," Materials Science and Engineering: A, vol. 289, pp. 189-197, 9/30/ 2000.
    [43]J. Musil, P. Zeman, H. Hruby, and P. H. Mayrhofer, "ZrN/Cu nanocomposite film—a novel superhard material," Surface and Coatings Technology, vol. 120–121, pp. 179-183, 11// 1999.
    [44]S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. D. Mannling, P. Nesladek, et al., "Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa," Surface and Coatings Technology, vol. 133–134, pp. 152-159, 11// 2000.
    [45]J. Musil and J. Vlček, "Magnetron sputtering of films with controlled texture and grain size," Materials Chemistry and Physics, vol. 54, pp. 116-122, 7// 1998.
    [46]S. Vepřek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jı́lek, and M. Šı́ma, "Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness," Surface and Coatings Technology, vol. 108–109, pp. 138-147, 10/10/ 1998.
    [47]B. Navinšek, P. Panjan, and I. Milošev, “Industrial applications of CrN(PVD) coatings, deposited at high and low temperatures”, Surface and Coatings Technology, vol. 97, pp. 182-191, 1997.
    [48]Xiang Gao, Darin W. Glenn, and John A. Woollam, “In situ ellipsometric diagnostics of multilayer thin film deposition during sputtering”, Thin Solid Films, 313-314, pp. 511-515, 1998.
    [49]Fu-Hsing Lu, and Hong-Yinh Chen, “Phase changes of CrN films annealed at high temperature under controlled atmosphere”, Thin Solid Films, 398-399, pp. 368-373, 2001.
    [50]吳明勳,“添加銀或鎢對氮化鉻薄膜磨潤性能之影響”,國立成功大學機械工程系,碩士論文,民國九十二年。
    [51]Y. Chiba, T. Omura, and H. Ichimura, “Wear resistance of arc ion-plated chromium nitride coatings’’, Journal of Materials Research, 8(5), pp.1109-1115, 1993.
    [52]W. D. Sproul, "Very high rate reactive sputtering of TiN, ZrN and HfN," Thin Solid Films, vol. 107, pp. 141-147, 9/16/ 1983.
    [53]C. Nouveau, M.A. Djouadi, “Stress and structure profiles for chromium nitride coatings deposited by r.f. magnetron sputtering,” Thin Solid Films, pp. 398-399,pp. 490-495, 2001.
    [54]J. V. Ramana, S. Kumar, C. David, A. K. Ray, and V. S. Raju, "Characterisation of zirconium nitride coatings prepared by DC magnetron sputtering," Materials Letters, vol. 43, pp. 73-76, 3// 2000.
    [55]M. Pakala, R. Y. Lin, “Reactive sputter deposition of chromium nitride coatings,” Surf. Coat. Technol,vol. 81, pp. 233-239, 1996..
    [56]Y. Chiba, T. Omura, and H. Ichimur, “Wear resistance of arc ion-plated chromium nitride coatings,” J. Mater. Res., 8(5),pp.1109-1115, 1993.
    [57]P. Hones, M. Diserens, R. Sanjines, F. Levy, “Electronic structure and mechanical properties of hard coatings from the chromium–tungsten nitride system,” J. Vac. Sci. Technol. , vol.18, pp.2851-2851, 2000.
    [58]D. Gall, C.S. Shin, T. Spila, M. Ode’n, M.J.H. Senna, J.E. Greene, I.Petrov, “Growth of single-crystal CrN on MgO(001): Effects of low-energy ion-irradiation on surface morphological evolution and physical properties,” J. Appl. Phys., 2002, 91, 3589.
    [59]William D. Callister Jr., Materials Science And Engineering: An Introduction, Wiley, New York, 2003.
    [60]D. Rafaja, A. Poklad, V. Klemm, G. Schreiber, D. Heger and M.ˇS’ıma, “Microstructure and hardness of nanocrystalline Ti1−x−yAlxSiyN thin films”, Materials Science and Engineering A, vol. 462, pp.279-282, 2007.
    [61]Jakob Schiotz, and Karsten W. Jacobsen, “A Maximum in the Strength of Nanocrystalline Copper”, Science 5, 301, 5638, pp.1357-1359,2003.
    [62]K. H. Kim, S.R. Choi, and S. Y. Yoon. “Superhard Ti-Si-N coatings by a hybrid system of arc ion plating and sputtering techniques”, Surface and Coatings Technology,vol. 298, pp. 243, 2002.
    [63]S. Vepˇek, M. Haussmann, S. Reiprich, Li Schzhi, and J. Dian, “Novel thermodynamically stable and oxidation resistant superhard coating materials”, Surface and Coatings Technology,vol. 394, pp. 86-87, 1996.
    [64]I.W. Park, S.R. Choi, M. H. Lee, and K. H. Kim, “Effects of Si addition on the microstructural evolution and hardness of Ti-Al-Si-N films prepared by the hybrid system of arc ion plating and sputtering techniques”, Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, A21, pp. 895, 2003.
    [65]E. Martinez, R. Sanjine, O. Banakh, and F. Le vy “Electrical,optical and mechanical properties of sputtered CrNy and Cr1-XSiXN1.02 thin films”, Thin Solid Films pp.447-448,pp.332-336,2004.
    [66]S. Vepˇrek, and S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films, vol.268, pp.64-71, 1995.
    [67]S. Vepˇrek, “New development in superhard coatings: the superhard nanocrystalline-amorphous composites”, Thin Solid Films, vol.317, pp. 449-454, 1998.
    [68]姚寶順,“反應濺鍍奈米結構氮化鋁鈦/氮化矽複合薄膜之研究“,國立成功大學機械工程系,博士論文,民國九十三年。
    [69]Y.L.Su, W.H. Kao, Tribology and application of Ti-C:H- and Cr-C:H-coated cemented tungsten carbide substrates , Surface and Coatings Technology ,vol 137, pp.293-303,2001.
    [70]B. Warcholinsk, A. Gilewicz, Z. Kuklinski, P. Myslin ski, Arc-evaporated CrN, CrN and CrCN coatings, Vacuum , Vol. 137, pp.715–718, 2009
    [71]Darja Kek Merl , Peter Panjan , Miha Cˇ ekada , Marijan Macˇek, The corrosion behavior of Cr-(C,N) PVD hard coatings deposited on various substrates, Electrochimica Acta, vol. 49, pp.1527–1533, 2004.
    [72]F. Schuster, F. Maury, J.F. Nowak, C. Bernard, Characterization of chromium nitride and carbonitride coatings deposited at low temperature by organometallic chemical vapour deposition, Surface and Coatings Technology, vol. 46, pp.275-288, 1991.
    [73]G.G. Fuentes, M.J. Diaz de Cerio, J.A. Garcia , R. Martinez , R. Bueno , R.J. Rodriguez , M. Rico , F. Montala , Yi Qin, Gradient CrCN cathodic arc PVD coatings, Surface and Coatings Technology, vol. 203, pp.670-674, 2008.
    [74]M. Diesselberg, H.-R. Stock, P. Mayr, Friction and wear behavior of PVD chromium nitride supported carbon coatings, Surface and Coatings Technology, vol. 188-189, p.p.612–616, 2004
    [75]S. Hertzman, Metall. Trans.vol.10, pp.1753-1766, 1987
    [76]J.A. Sue, A.J. Perry, J.Vetter, “Young’s modulus and stress of CrN deposited by cathodic vacuum arc evaporation”, Surface and Coatings Technology, vol.68-69, pp.126-130, 1994.
    [77]F. Schuster, F. Maury, J.F. Nowak, C. Bernard, Characterization of chromium nitride and carbonitride coatings deposited at low temperature by organometallic chemical vapour deposition, Surface and Coatings Technology, Vol. 46, pp.275-288, 1991.
    [78]Darja Kek Merl , Peter Panjan , Miha Cˇ ekada , Marijan Macˇek, The corrosion behavior of Cr-(C,N) PVD hard coatings deposited on various ubstrates, Electrochimica Acta, Vol. 49, pp.1527–1533, 2004.
    [79]Thangavel, Elangovan, et al. "Synthesis and characterization of Ti–Si–C–N nanocomposite coatings prepared by a filtered vacuum arc method." Applied Surface Science , vol. 265, pp. 60-65, 2013.
    [80]Bendavid, A., et al. "Deposition of nanocomposite TiN-Si3N4 thin films by hybrid cathodic arc and chemical vapor process." Applied Physics, vol. 81.1, pp. 151-158, 2005.
    [81]Bendavid, A., et al. "Deposition of nanocomposite thin films by a hybrid cathodic arc and chemical vapour technique." Surface and Coatings Technology, vol. 201.7, pp. 4139-4144, 2006.
    [82]Conde, A., et al. "Surface analysis of electrochemically stripped CrN coatings." Surface and Coatings Technology, vol. 201.6, pp. 3588-3595, 2006.

    QR CODE