簡易檢索 / 詳目顯示

研究生: 張詩典
Shih-Tien Chang
論文名稱: 以脈衝直流磁控濺鍍法鍍製氮化鉻鋯與氮化鉻鋯矽奈米複合薄膜性質評估研究
Characteristics of pulsed DC reactive magnetron sputtered nanocomposite Cr-Zr-N and Cr-Zr-Si-N thin films
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 李志偉
Jyh-Wei Lee
朱瑾
jinn P. Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 134
中文關鍵詞: 氮化鉻鋯矽薄膜氮化鉻鋯薄膜直流反應式磁控濺鍍儀奈米壓痕破裂韌性磨耗
外文關鍵詞: Cr-Zr-Si-N thin film, Cr-Zr-N thin film, pulsed DC reactive magnetron sputtering, nanoindentation, fracture toughness, wear
相關次數: 點閱:261下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鉻薄膜擁有良好的機械性質與抗氧化能力,但硬度略低於其他硬膜,實驗將鋯與矽同時加入氮化鉻薄膜中以期改善顯微結構與機械性質。研究使用反應式雙極非對稱脈衝直流磁控濺鍍法製備含鋯量自0.49 at.%到13.58 at.%範圍的五種氮化鉻鋯矽奈米複合薄膜,各薄膜在加入約5 ~ 7 at%的矽含量後,使得原本典型的氮化鉻柱狀結構與晶粒尺度趨於細緻化,同時機械性質也得到提升。硬度也由於鋯的加入而增加,薄膜鋯含量為10.42 %時達到最高硬度23.99 GPa,且隨鋯含量的增加會更進一步的使薄膜結構緻密化,刮痕試驗中顯示薄膜的臨界荷重隨鋯含量增加而下降。另外於3.5 wt.% 氯化鈉水溶液電化學腐蝕實驗中可以得知,加入矽可以薄膜提升抗蝕能力,同時也隨鋯含量增加而提升。在850 oC高溫氮化鉻鋯矽的抗高溫氧化能力隨鋯含量增加而下降,留下鬆散的氧化鉻結構。


    The chromium nitride thin film have a good mechanical properties and oxidation resistance. but the drawback is the slightly lower hardness then other hard coatings. the concept of nanocomposite thin films is employed by adding silicon and zirconium to enhanced microstructures, mechanical properties and corrosion resistance, In this study, The Cr-Zr-N and Cr-Zr-Si-N thin films with various Zr contents ranging from 0.49 at.% to 13.58 at.% were deposited by a bipolar asymmetric pulsed DC reactive magnetron sputtering system. The columnar structure and grain size refinements and the mechanical properties enhancements were observed due to the addition of 6.98 at.% Si to the Cr-Zr-N coating. A texture evolution was observed when the Zr contents of Cr-Zr-Si-N film increased. The hardness increased with increasing Zr contents in the Cr-Zr-Si-N coatings. The Cr-Zr-Si-N coatings with 10.42 at.% Zr content exhibited a combination of high hardness, based on the scratch adhesion strength test results, the adhesion properties of Cr-Zr-Si-N coatings deposited on tool steels are decreased with increasing Zr. The corrosion resistance was analyed by using the potentiostat in 3.5 wt.% NaCl aqueous solution. and the corrosion resistance of the thin films was improved as the Zr content increased. According to the oxidation tests at 850oC,after the annealing test, It is found that volume of thin film increased with increasing Zr contents, In general, the high temperature oxidation resistance of Cr-Zr-Si-N coatings decreased with increasing Zr.

    第一章 序論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 脈衝直流磁控濺鍍系統 3 2.1.1 磁控濺鍍系統 3 2.1.2 直流式(DC)磁控濺鍍系統 5 2.1.3 反應性氣體濺鍍(Reactive Gas Sputtering) 5 2.1.4 遲滯效應 6 2.1.5 脈衝磁控濺鍍法 7 2.2 氮化鉻薄膜 9 2.2.1 氮化鉻薄膜特性 9 2.2.2 氮化鉻薄膜組成 10 2.3 氮化鉻矽與氮化鉻鋯奈米複合薄膜 12 2.3.1 氮化鋯矽奈米複合薄膜強化機制 12 2.3.2 氮化鉻鋯奈米複合薄膜強化機制 17 2.7薄膜電化學腐蝕 18 第三章 實驗方法 21 3.1 實驗流程 21 3.2 實驗方法與步驟 25 3.2.1 基材試片規格與前處理 25 3.2.2 實驗設備 27 3.2.3 鍍膜製程 28 3.3 鍍膜性質 31 3.3.1 成份分析實驗 31 3.3.2 表面與截面型態分析試驗 31 3.3.3 X光繞射分析試驗 32 3.3.4 硬度試驗 33 3.3.5 附著性試驗 35 3.3.6 破斷韌性試驗 37 3.3.7 磨耗試驗 38 3.3.8 電化學腐蝕實驗 39 3.3.9 高溫氧化實驗 41 第四章 結果與討論 42 4.1 晶相及微結構分析 42 4.1.1 成份分析 42 4.1.2 晶相分析 44 4.1.3 鍵結能譜分析 48 4.1.4 微結構分析 54 4.2 機械性質 65 4.2.1 硬度 65 4.2.2 破斷韌性 66 4.2.3 磨耗性質 73 4.2.4 刮痕試驗附著性分析 78 4.3 電化學腐蝕實驗 82 4.4 高溫氧化實驗 92 4.4.1 薄膜表面型態變化 92 4.4.2 晶相分析 93 4.4.3 薄膜表面與橫截面影像分析 95 4.5 矽添加對於CrZrSiN薄膜的影響 105 4.6 鋯添加對於CrZrSiN薄膜的影響 105 第五章 結論 107 參考文獻 109

    1. M. Konuma, “Film Deposition by Plasma Techniques”, Springer-Verlag, 1992.
    2. J. L. He, W. Z. Li, and H. D. Li, “Hardness study of nanoscale TiN/Pt multilayers”, Materials Letters, 30, pp. 15-18, 1997.
    3. W. Zhang, X. Zhang, and D. Yang, Q. Xue, “Microstructure and tribological characteristics of multilayer films deposited by ion-beam mixing”, Wear, 197, pp. 266-270, 1996.
    4. Takenori Nakayama, Kenji Yamamoto, Hiroshi Satoh, Toyohiko J. Konno, Bruce M. Clemens, and Robert Sinclair, “Structure and corrosion properties of A1/Si and Fe/Zr multilayers”, Materials Science and Engineering A, 198, pp. 19-24, 1995.
    5. L. Knoblauch-Meyer, and R. Hauert, “Tribological properties of a-C:H multilayer structures”, Thin Solid Films, 338, pp.172-176, 1999.
    6. A. Pinyol, E. Bertran, C. Corbella, M. C. Polo, and J. L. Andújar, “Properties of W/a-C nanometric multilayers produced by RF-pulsed magnetron sputtering”, Diamond and Related Materials, 11, pp. 1000-1004, 2002.
    7. Jing Wang, Wen-Zhi Li, Heng-De Li, Bing Shi, and Jian-Bin Luo, “Nanoindentation study on the mechanical properties of TiC/Mo multilayers”, Thin Solid Films, 366, pp. 117-120, 2000.
    8. Xiang Gao, Darin W. Glenn, and John A. Woollam, “In situ ellipsometric diagnostics of multilayer thin film deposition during sputtering”, Thin Solid Films, 313-314, pp. 511-515, 1998.
    9. Zs. Czigány and G. Radnóczi, “Columnar growth structure, and evolution of wavy interface morphology in amorphous and polycrystalline multilayered thin films”, Thin Solid Films, 347, pp. 133-145, 1999.
    10. Veprek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jýlek, and M. Sýma, “Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness”, Surface and Coatings Technology, 108-109, pp. 138-147, 1998.
    11. H. D. Männling, D. S. Patil, K. Moto, M. Jilek, and S. Veprek, “Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides”, Surface and Coatings Technology, 146-147, pp. 263-267, 2001.
    12. P. H. Mayrhofer, and C. Mitterer, “High-temperature properties of nanocomposite TiBxNy and TiBxCy coatings”, Surface and Coatings Technology, 133-134, pp. 131-137, 2000.
    13. M. Stüber, H. Leiste, S. Ulrich, H. Holleck, and D. Schild, “Microstructure and properties of low friction TiC---C nanocomposite coatings deposited by magnetron sputtering”, Surface and Coatings Technology, 150, pp. 218-226, 2002.
    14. B. Navinšek, P. Panjan, and I. Milošev, “Industrial applications of CrN(PVD) coatings, deposited at high and low temperatures”, Surface and Coatings Technology, 97, pp. 182-191, 1997.
    15. S. Vepřek, and M. G. J. Vepřek-Heijman, “The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites”, Surface and Coatings Technology, 201, pp. 6064, 2007.
    16. J. Musil, and M. Jirout, “Toughness of hard nanostructured ceramic thin film”, Surface and Coatings Technology, 201, pp. 5148-5152, 2007.
    17. J. W. Lee, and Y. C. Chang, Surf. Coat. Technol. 202 (2007) p. 831.
    18. E. O. Hall, and Proc. Phys. Soc. London, Sect. B 64 (1951) p. 747.
    19. J. Takadoum, H. Houmid-Bennani, D. Mairey and J. Eur. Ceram. Soc. 18 (1998) p. 553.
    20. P. J. Martin, A. Bendavid, and J. M. Cairney, M. Hoffman, Surf. Coat. Technol. 200 (2005) p. 2228.
    21. B. N. Chapman, Glow Discharge Processes, John Wiley, and Sons, 1980.
    22. J. L. Vossen, and W. Kern, Thin Film Processes II, Academic Press, 1991.
    23. M. A. Lieberman, and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 1994.
    24. 洪昭南, “電漿反應器”, 化工技術, 1995
    25. 洪昭南、郭有斌, “以化學氣相沉積法成長半導體薄膜” 化工技術, 2000
    26. R. Cremer, K. Reichert, D. Neuschütz, and G. Erkens, and T. Leyendecker, “Sputter deposition of crystalline alumina coatings”, Surface and Coatings Technology, 163-164, pp. 157-163, 2003.
    27. 楊明輝,“脈衝磁控濺鍍技術介紹”,工業材料雜誌,第兩百三十二期,91頁,民國九十五年。
    28. J. Vetter, R. Knaup, H. Dwuletzki, E.Schneidr, and S. Vogler, “Hard coatings for lubrication reduction in metal forming”, Surface and Coatings Technology, 86-87, pp. 739, 1996.
    29. O. Knotek, F. Loffler, and B. Bosserhoff, “PVD coatings for diecasting moulds”, Surface and Coatings Technology, 62, pp. 630-634, 1993.
    30. C. Nouveau, and M. A. Djouadi, “Stress and structure profiles for chromium nitride coatings deposited by r.f. magnetron sputtering”, Thin Solid Films, 398-399, pp. 490-495, 2001,
    31. Fu-Hsing Lu, and Hong-Yinh Chen, “Phase changes of CrN films annealed at high temperature under controlled atmosphere”, Thin Solid Films, 398-399, pp. 368-373, 2001.
    32. 吳明勳,“添加銀或鎢對氮化鉻薄膜磨潤性能之影響”,國立成功大學機械工程系,碩士論文,民國九十二年。
    33. Y. Chiba, T. Omura, and H. Ichimura, “Wear resistance of arc ion-plated chromium nitride coatings’’, Journal of Materials Research, 8(5), pp.1109-1115, 1993.
    34. P. Hones, M. Diserens, R. Sanjinés, and F. Lévy, “Electronic structure and mechanical properties of hard coatings from the chromium–tungsten nitride system”, Journal of Vacuum Science & Technology B, 18, pp. 2851, 2000.
    35. D. Gall, C. S. Shin, T. Spila, M. Ode´n, M.J.H. Senna, J.E. Greene, and I.Petrov, “Growth of single-crystal CrN on MgO(001): Effects of low-energy ion-irradiation on surface morphological evolution and physical properties”, Journal of Applied Physics, 91, pp. 3589, 2002.
    36. C. Nouveau, M. A. Djouadi, C. Deces-Petit, P. Beer, and M. Lambertin,“Influence of CrxNy coatings deposited by magnetron sputtering on tool service life in wood processing”, Surface and Coatings Technology, 142-144, pp.94-101, 2001.
    37. H. Jensen, J. Sobata, and G. Sorensen,”Multilayer film deposition of TiN/AlN on a roating substrate holder from reactive sputtering of elemental targets of titanium and aluminum”, Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films, A15, pp.941-945, 1997.
    38. J. H. Park, W. S. Chung, Y. R. Cho and K. H. Kim, Surf. Coat. Technol. 188-189 (2004) 425.
    39. K. Yamamoto, T. Sato, and M. Takeda, Surf. Coat. Technol. 193 (2005) 167.
    40. Jong Hyun Park, Won Sub Chung, Young-Rae Cho, and Kwang Ho Kim,” Synthesis and mechanical properties of Cr–Si–N coatings deposited by a hybrid system of arc ion plating and sputtering techniques”, Surface and Coatings Technology, v 188-189, n 1-3 SPEC.ISS., p 425-430, November/December 2004
    41. Chung Won Sub, Cho Young-Rae, and Kim Kwang Ho, “Synthesis and mechanical properties of Cr-Si-N coatings deposited by a hybrid system of arc ion plating and sputtering techniques”, Surface and Coatings Technology, pp. 180 -181 (2004) pp. 352-356
    42. William D. Callister Jr., Materials Science And Engineering: An Introduction, Wiley, New York, 2003.
    43. D. Rafaja, A. Poklad, V. Klemm, G. Schreiber, D. Heger and M. ˇS´ıma, “Microstructure and hardness of nanocrystalline Ti1−x−yAlxSiyN thin films”, Materials Science and Engineering A, 462, pp.279-282, 2007.
    44. Jakob Schiøtz, and Karsten W. Jacobsen, “A Maximum in the Strength of Nanocrystalline Copper”, Science 5, 301, 5638, pp.1357-1359, 2003.
    45. K. H. Kim, S.R. Choi, and S. Y. Yoon. “Superhard Ti-Si-N coatings by a hybrid system of arc ion plating and sputtering techniques”, Surface and Coatings Technology, 298, p. 243, 2002.
    46. S. Vepˇek, M. Haussmann, S. Reiprich, Li Schzhi, and J. Dian, “Novel thermodynamically stable and oxidation resistant superhard coating materials”, Surface and Coatings Technology, 394, pp. 86-87, 1996.
    47. I. W. Park, S.R. Choi, M. H. Lee, and K. H. Kim, “Effects of Si addition on the microstructural evolution and hardness of Ti-Al-Si-N films prepared by the hybrid system of arc ion plating and sputtering techniques”, Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, A21, p. 895, 2003.
    48. E. Martinez, R. Sanjine, O. Banakh, and F. Le vy “Electrical,optical and mechanical properties of sputtered CrNy and Cr1-XSiXN1.02 thin films”, Thin Solid Films pp.447-448,pp.332-336,2004.
    49. S. Vepˇrek, and S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films, 268, pp.64-71, 1995.
    50. S. Vepˇrek, “New development in superhard coatings: the superhard nanocrystalline-amorphous composites”, Thin Solid Films, 317, pp. 449-454, 1998.
    51. 姚寶順,“反應濺鍍奈米結構氮化鋁鈦/氮化矽複合薄膜之研究“,國立成功大學機械工程系,博士論文,民國九十三年。
    52. S. Vepˇrek, “Electronic and mechanical properties of nanocrystalline composites when approaching molecular size” Thin Solid Films, 297, pp. 145-153, 1997.
    53. 蕭國益,翁明壽,“硬及超硬膜技術的現在與未來”,工業材料,143期,74 - 89頁,民國八十七年。
    54. M. Fenker, M. Balzer, and H. Kappl, “Corrosion behaviour of decorative and wear resistant coatings on steel deposited by reactive magnetron sputtering-Tests and improvements”, Thin Solid Films, 515, pp.27-32, 2006.
    55. Cheng-Hsun Hsu, Chien-Chih Lee, and Wei-Yu Ho, “Filter effects on the wear and corrosion behaviors of arc deposited (Ti,Al)N coatings for application on cold-work tool steel”, Thin Solid Films, 516, pp. 4826-4832, 2008.
    56. J. Komotori , B. J. Lee , H. Dong, and P. A. Dearnley, “Corrosion response of surface engineered titanium alloys damaged by prior abrasion”, Wear, 251, pp. 1239-1249, 2001.
    57. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures, Wiley, New York, 1974.
    58. TriboScope User Manual, Hysitron Inc, 2002.
    59. Magnus Odén, Claes Ericsson, Greger Håkansson, and Henrik Ljungcrantz, “Microstructure and mechanical behavior of arc-evaporated Cr-N coatings”, Surface, and Coatings Technology,114, pp.39-51, 1999.
    60. S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, and S. Veprek, “Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si2N4 with TiN”, Surface, and Coatings Technology,194, pp.143-148, 2005.
    61. P. J. Kelly, and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vacuum, 56, pp.159-172, 2000.
    62. K. P. Purushotham, Liam. P. Ward, Narelle Brack, Paul J. Pigram, Peter Evans, Hans Noorman, and Rafael R. “Manory Wear behaviour of CrN coatings MEVVA ion implanted with ZrSurf.” Coat. Technol November 2004, pp. 901-908
    63. S. H. Ahn, Y. S. Choi, J. G. Kim, and J. G. Han, “A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method”, Surface and Coatings Technology, Vol. 150, pp. 319-326 (2002).
    64. K. N. Andersen, E. J. Bienk, K. O. Schweitz, H. Reitz, J. Chevallier, P. Kringhøj, and J. Bøttiger, “Deposition, microstructure and mechanical and tribological properties of magnetron sputtered TiN/TiAlN multilayers”, Surface and Coatings Technology, 123, pp.219-226, 2000.

    QR CODE