簡易檢索 / 詳目顯示

研究生: 郭羿成
Yi-Cheng Guo
論文名稱: 不同添加劑對PAG冷凍潤滑油於R134a冷媒環境下磨潤性能之研究
Study on Tribological Performance of Refrigeration Oil PAG with Different Additives in R134a Refrigerant Environment
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
呂道揆
張復瑜
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 215
中文關鍵詞: 耐極壓性能四球磨耗聚烷基二醇合成油磷系添加劑二烷基二硫代磷酸鋅添加劑
外文關鍵詞: EP performance, Four-ball wear test, PAG, P-based additive, ZDDP additive
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究目的在於研究磷系與二烷基二硫代磷酸鋅(Zinc Dialkyl Dithiophsphates, ZDDP)添加劑於聚烷基二醇合成油(Poly Alkylene Glycol, PAG)中之耐極壓性能。透過在不同負載、溫度及試驗時間條件下進行四球滑動磨耗試驗,評估試驗用油之耐極壓性能與磨疤演變,亦在磨耗試驗過程中通入R134a冷媒用以評估在冷媒對於試驗用油磨潤性能之影響。

      結果顯示加入適當添加劑能有效改善PAG冷凍油之耐極壓性能,且於高溫、高負載條件下提升更為顯著。且在磨耗試驗初期因磨耗表面產生之高接觸溫度,添加劑即開始啟動與基材之反應生成化合膜。而在冷媒環境下則須考慮基礎油、添加劑與冷媒三者間之相容性。

      陶瓷球因具有較高之化學惰性,難與添加劑產生反應形成化合膜,但在極壓狀態下仍會與添加劑反應生成化合膜。


      This study was conducted to investigate the extreme performance of phosphorus-based and zinc dialkyl dithiophosphate (ZDDP) additives mixed with poly alkylene glycol (PAG) oil by implementing the four-ball sliding wear test under different loading, oil temperature, and test duration conditions. The extreme pressure (EP) performance and evolution of the wear scar were evaluated. Additionally, the refrigerant R134a was mixed into the test oil during the wear test to evaluate its effects on the tribological performance of the test oil.

      The results show that the addition of appropriate additives could effectively improve the EP performance of PAG oil. Furthermore, under the conditions of high temperature and high load, the positive effects of the additives on the EP performance were more significant. Moreover, at the beginning of the wear test, because the high contact temperature was generated as a result of the worn surface, the additive began reacting with the substrate to form a compound film. However, when refrigerants are used, its compatibility with the base oil and additives must be considered.

      Because the ceramic material has high chemical inertness, it did not readily react with the additive to form a compound film. However, it reacted with the additive to form a compound film under EP conditions.

    摘要 III Abstract IV 誌謝 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 模型設計 3 第二章 文獻回顧 4 2.1 冷凍潤滑油 4 2.2 潤滑油添加劑 5 2.2.1 極壓添加劑的磨潤性質 7 2.2.2 ZDDP添加劑的磨潤性質 9 2.3 冷媒 11 2.3.1 冷媒與冷凍潤滑油之關係 11 2.4 邊界潤滑膜 13 2.5 磨耗機制與潤滑模式 17 2.5.1 磨耗機制 17 2.5.2 潤滑模式 20 2.6 球體表面接觸行為 23 2.7 閃火溫度與表面接觸溫度之關係 27 2.8 磨疤尺寸與磨耗量之關係 31 第三章 實驗設備與方法 32 3.1 實驗設備 32 3.1.1 TE 92磨耗試驗機 33 3.1.2 四球滑動磨耗速度 35 3.1.3 球體接觸力 36 3.2 分析儀器 37 3.3 試球規格 40 3.4 試驗用油與添加劑性質 42 3.4.1 基礎油 42 3.4.2 極壓/抗磨耗添加劑 43 3.5 試驗冷媒 46 3.6 極壓性能試驗條件 48 3.7 實驗步驟 50 3.7.1 實驗前準備 50 3.7.2 磨耗試驗步驟 51 3.7.3 實驗後分析 52 第四章 結果與討論 53 4.1 不同添加劑對PAG冷凍潤滑油之磨潤性能影響 53 4.1.1 PAG冷凍潤滑油之磨耗形貌分析 58 4.1.2 磷系添加劑與PAG冷凍潤滑油之磨耗形貌分析 64 4.1.3 ZDDP添加劑與PAG冷凍潤滑油之磨耗形貌分析 72 4.2 不同添加劑加入PAG冷凍潤滑油進行磨耗試驗之磨疤演變 79 4.3 不同添加劑對PAG冷凍潤滑油於R134a冷媒環境下之磨潤性能影響 98 4.3.1 PAG冷凍潤滑油於R134a冷媒環境下之磨耗形貌分析 101 4.3.2 磷系添加劑與PAG冷凍潤滑油於R134a冷媒環境下之磨耗形貌分析 107 4.3.3 ZDDP添加劑與PAG冷凍潤滑油於R134a冷媒環境下之磨耗形貌分析 113 4.4 不同添加劑加入PAG冷凍潤滑油於R134a冷媒環境下進行磨耗試驗之磨疤演變 120 4.5 不同添加劑於PAG冷凍潤滑油對陶瓷球磨潤性能之影響 138 4.5.1 不同添加劑在PAG冷凍潤滑油中對Al2O3陶瓷球進行磨耗試驗之磨耗形貌分析 142 4.5.2 不同添加劑在PAG冷凍潤滑油中對Si3N4陶瓷球進行磨耗試驗之磨耗形貌分析 158 4.6 不同添加劑對PAG冷凍潤滑油於軸承鋼/陶瓷滑動件磨潤性能之影響 173 4.6.1 不同添加劑對PAG冷凍潤滑油於軸承鋼/陶瓷滑動件進行磨耗試驗之磨耗形貌分析 175 第五章 結論 192 5.1 結論 192 5.2 未來展望 195 參考文獻 196 附錄 200

    [1] 李居芳, 冷凍空調概論. 全華圖書, 2008.
    [2] 張景河, 現代潤滑油與燃料添加劑. 中國石化出版社, 1992.
    [3] 吳榮晃, "參加STLE磨潤與潤滑工程師年會2005年會," 2005.
    [4] 林口興業有限公司. 基礎油. Available: http://www.formosalube.com.tw/uploads/pdf/knowledge_34.pdf
    [5] 邱錦德, "極壓添加劑於不同基礎油中之磨潤行為," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2004.
    [6] 林榮盛, 潤滑學. 全華科技圖書股份有限公司, 1987.
    [7] B. Podgornik and J. Vižintin, "Tribological reactions between oil additives and DLC coatings for automotive applications," Surface and Coatings Technology, vol. 200, no. 5-6, pp. 1982-1989, 2005.
    [8] 徐濱士, 神奇的表面工程. 清華大學出版社, 2000.
    [9] Y.-C. Lin, Y.-H. Cho, and C.-T. Chiu, "Tribological performance of EP additives in different base oils," Tribology Transactions, vol. 55, no. 2, pp. 175-184, 2012.
    [10] A. Molina, "Isolation and chemical characterization of a zinc dialkyldithiophosphate-derived antiwear agent," ASLE transactions, vol. 30, no. 4, pp. 479-485, 1986.
    [11] J. Martin, M. Belin, J. Mansot, H. Dexpert, and P. Lagarde, "Friction-induced amorphization with ZDDP—an EXAFS study," ASLE transactions, vol. 29, no. 4, pp. 523-531, 1986.
    [12] A. Bhattacharya, T. Singh, and V. Verma, "EP activity evaluation of cyclic disulphides using ball bearings of different compositions," Tribology International, vol. 23, no. 5, pp. 361-365, 1990.
    [13] 溫詩鑄、黃平, 摩擦學原理. 清華大學出版社, 2002.
    [14] 林原慶, "ZDDP添加劑在邊界潤滑狀態下的抗磨耗研究," 博士, 機械工程研究所, 國立臺灣大學, 台北市, 1993.
    [15] P. Forster, and V. Ramaswamy, "Changes in atmospheric constituents and in radiative forcing. Chapter 2," in Climate Change 2007. The Physical Science Basis, 2007.
    [16] 葉志強, "以冷媒R134a萃取乙醇," 碩士, 應用化學系所, 國立交通大學, 新竹市, 2004.
    [17] 彭世偉, "不同冷媒對極壓添加劑磨潤性能的影響," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2016.
    [18] 陳銘章, 冷凍工程. 長諾資訊圖書公司, 1987.
    [19] Y. Yamamoto, J. Kim, S. Gondo, and J. Sugimura, "The effect of HFC refrigerant dissolution on oil film thickness and wear characteristics of oils," in Tribology Series, vol. 38: Elsevier, 2000, pp. 771-776.
    [20] A. Sethuramiah and R. Kumar, Modeling of Chemical Wear: Relevance to Practice. Elsevier, 2015.
    [21] A. Tripathi, A. Bhattacharya, R. Singh, and V. Verma, "Tribological studies of 1-alkyl-2, 5-dithiohydrazodicarbonamides and their Mo–S complexes as EP and multifunctional additives," Tribology international, vol. 33, no. 1, pp. 13-20, 2000.
    [22] O. Gorbatchev, M.I. De Barros Bouchet, J.M. Martin, D. Leonard, T. Le-Mogne, R. Iovine, B. Thiebaut, and C. Heau, "Friction reduction efficiency of organic Mo-containing FM additives associated to ZDDP for steel and carbon-based contacts," Tribology International, vol. 99, pp. 278-288, 2016.
    [23] Wear; Terms, Systematic Analysis of Wear Processes, Classification of Wear Phenomena, 1979.
    [24] G. Straffelini, "Friction and wear," Springer International Publishing, Switzerland. doi, vol. 10, pp. 978-3, 2015.
    [25] K.-H. Zum Gahr, Microstructure and wear of materials. Elsevier, 1987.
    [26] E. Rabinowicz, "An adhesive wear model based on variations in strength values," Wear, vol. 63, no. 1, pp. 175-181, 1980.
    [27] G. Stachowiak and A. W. Batchelor, Engineering tribology. Butterworth-Heinemann, 2013.
    [28] J. Sotres and T. Arnebrant, "Experimental investigations of biological lubrication at thenanoscale: the cases of synovial joints and the oral cavity," Lubricants, vol. 1, no. 4, pp. 102-131, 2013.
    [29] G. M. Hamilton, "Explicit equations for the stresses beneath a sliding spherical contact," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 197, no. 1, pp. 53-59, 1983.
    [30] J. Archard, "The temperature of rubbing surfaces," wear, vol. 2, no. 6, pp. 438-455, 1959.
    [31] Cameron-Plint. Available: http://www.phoenix-tribology.com/
    [32] 陳又嘉, "添加劑對於不同基礎油與不同材料之磨潤性能的影響," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2018.
    [33] W. Piekoszewski, M. Szczerek, and W. Tuszynski, "The action of lubricants under extreme pressure conditions in a modified four-ball tester," Wear, vol. 249, no. 3-4, pp. 188-193, 2001.
    [34] 天工精密股份有限公司. Available: https://www.tankong.com/tw/
    [35] 宏盛鋼珠軸承有限公司. Available: http://ths-brg.com/index.html
    [36] 慧久股份有限公司.
    Available: http://www.keiku.net/service/index.aspx?shop=Keiku
    [37] I. Colonial Chemical. Available: https://www.colonialchem.com/
    [38] I. Chemicals. Available: http://lubeperformanceadditives.com/
    [39] Polyethylene Glycol Monooleyl Ether Phosphate. Available: https://www.chemblink.com/products/39464-69-2.htm
    [40] 震豐股份有限公司. Available: http://www.chain-fong.com/
    [41] Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid (Four-Ball Method), 2016.
    [42] Petroleum products-Calculation of viscosity index from kinematic viscosity, 2002.
    [43] H. Fukui, K.-i. Sanechika, and M. Ikeda, "novel refrigeration lubricants for use with HFC refrigerants," Tribology international, vol. 33, no. 10, pp. 707-713, 2000.

    無法下載圖示 全文公開日期 2024/07/30 (校內網路)
    全文公開日期 2029/07/30 (校外網路)
    全文公開日期 2029/07/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE