簡易檢索 / 詳目顯示

研究生: 黃嘉偉
Chia-Wei Huang
論文名稱: 常壓電漿氮化製程於AISI 304不鏽鋼/JIS-SCM430鉻鉬鋼與氮化物還原之研究
Atmospheric Pressure Plasma Nitridation of AISI 304 Stainless Steel/JIS-SCM430 Chromium Molybdenum Steel and the Reduction Behaviors
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 郭錦龍
顧洋
曾堯宣
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 112
中文關鍵詞: 哈伯法氨氣常壓電漿噴射束氮化處理
外文關鍵詞: Habor-Bosch process, Ammonia, Atmospheric pressure plasma jet(APPJ), Nitridation
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 5 2.1 氨氣 5 2.1.1 哈伯法製氨與其原理 6 2.1.2 氨氣的應用 7 2.2 新式產氨工藝 10 2.2.1 氣固化學反應—氫氣 11 2.2.2 氣固化學反應—水蒸氣 12 2.2.3 電催化法 14 2.2.4 電漿液體界面反應 15 2.3 電漿介紹 17 2.3.1 電漿原理與反應機制 19 2.3.2 電漿的種類 23 2.3.3 電漿的應用 27 2.4 氮化介紹 36 2.4.1 鹽浴氮化 37 2.4.2 氣體氮化 37 2.4.3 離子氮化 39 2.4.4 氮化因子 41 第三章 實驗流程與設備 43 3.1 實驗設計 43 3.2 實驗材料 44 3.3 實驗步驟 45 3.3.1 常壓電漿噴射束製備氮化材料 45 3.3.2 固定式反應床設置 48 3.4 實驗設備及原理 49 3.4.1 常壓電漿噴射束反應系統 49 3.4.2 固定式反應床 51 3.4.3 光學放射光譜儀 52 3.4.4 維克氏硬度機 53 3.4.5 X光繞射儀 54 3.4.6 場發射掃描式電子顯微鏡 55 3.4.7 離子層析法 56 第四章 結果與討論 58 4.1 電漿物種檢測 58 4.2 表面與剖面硬度分析 60 4.3 SEM Mapping分析 63 4.4 SEM EDS分析 66 4.5 X光繞射分析 73 4.6 離子層析分析 83 4.7 常壓電漿噴射束氮化機制 84 4.8 氮化物還原生成氨氣機制推導 86 4.9 結果比較 87 第五章 結論 88 第六章 未來展望 90 參考資料 91

    [1] 世界人口預測. Available: https://www.ined.fr/fr/tout-savoir-population/chiffres/projections-mondiales/projections-par-continent/
    [2] H. R. Max Roser, Esteban Ortiz-Ospina. (2013). World Population Growth. Available: https://ourworldindata.org/world-population-growth
    [3] V. Pattabathula and J. Richardson, "Introduction to ammonia production," CEP magazine, vol. 2, pp. 69-75, 2016.
    [4] J. G. Chen et al., "Beyond fossil fuel–driven nitrogen transformations," Science, vol. 360, no. 6391, p. eaar6611, 2018.
    [5] T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens, and R. Schlogl, "The Haber-Bosch process revisited: on the real structure and stability of "ammonia iron" under working conditions," Angew Chem Int Ed Engl, vol. 52, no. 48, pp. 12723-6, Nov 25 2013.
    [6] A. Briney. (2019). Overview of the Haber-Bosch Process. Available: https://www.thoughtco.com/overview-of-the-haber-bosch-process-1434563
    [7] P. Barach. (2016). The Tragedy of Fritz Haber: The Monster Who Fed The World. Available: https://medium.com/the-mission/the-tragedy-of-fritz-haber-the-monster-who-fed-the-world-ec19a9834f74
    [8] O. Hinrichsen, "Kinetic simulation of ammonia synthesis catalyzed by ruthenium," Catalysis Today, vol. 53, no. 2, pp. 177-188, 1999/10/28/ 1999.
    [9] T. E. C. Industry. (2016). Ammonia. Available: https://essentialchemicalindustry.org/chemicals/ammonia.html
    [10] C. S. Facts. Ammonia. Available: https://www.chemicalsafetyfacts.org/ammonia/
    [11] A. Afif, N. Radenahmad, Q. Cheok, S. Shams, J. H. Kim, and A. K. Azad, "Ammonia-fed fuel cells: a comprehensive review," Renewable and Sustainable Energy Reviews, vol. 60, pp. 822-835, 2016.
    [12] N. Y. S. D. o. Health. (2004). The Facts About Ammonia. Available: https://www.health.ny.gov/environmental/emergency/chemical_terrorism/ammonia_tech.htm
    [13] J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, "How a century of ammonia synthesis changed the world," Nature Geoscience, vol. 1, no. 10, pp. 636-639, 2008.
    [14] S. S. Zumdahl. (2020). Ammonia. Available: https://www.britannica.com/science/ammonia
    [15] S. Su et al., "Anhydrous dyeing processes of ramie fiber in liquid ammonia," Cellulose, vol. 26, no. 13, pp. 8109-8120, 2019.
    [16] Y. Cai, Y. Huang, F. Liu, L. He, L. Lin, and Q. Zeng, "Liquid ammonia dyeing of cationic ramie yarn with triazinyl reactive dyes," Cellulose, vol. 21, no. 5, pp. 3841-3849, 2014.
    [17] H. A. Curtis, "Ammonia," Journal of Chemical Education, vol. 19, no. 4, p. 188, 1942.
    [18] S. Friedrichs, H. Hodson, and W. Dawes, "Distribution of film-cooling effectiveness on a turbine endwall measured using the ammonia and diazo technique," Journal of Turbomachinery, vol. 118, no. CONF-950629-, 1996.
    [19] J. G. Speight, "Chapter Three - Industrial Inorganic Chemistry," in Environmental Inorganic Chemistry for Engineers, J. G. Speight, Ed.: Butterworth-Heinemann, 2017, pp. 111-169.
    [20] Nitric Acid. Available: https://www.epa.gov/sites/default/files/2020-09/documents/8.8_nitric_acid.pdf
    [21] 綠色能源特展. Available: https://www3.nstm.gov.tw/green/01_about_a.html
    [22] M. Aziz, A. T. Wijayanta, and A. B. D. Nandiyanto, "Ammonia as effective hydrogen storage: A review on production, storage and utilization," Energies, vol. 13, no. 12, p. 3062, 2020.
    [23] R. Lan, J. T. Irvine, and S. Tao, "Ammonia and related chemicals as potential indirect hydrogen storage materials," International Journal of Hydrogen Energy, vol. 37, no. 2, pp. 1482-1494, 2012.
    [24] S. He et al., "Metal nitride nanosheets enable highly efficient electrochemical oxidation of ammonia," Nano Energy, vol. 80, p. 105528, 2021.
    [25] A. Klerke, C. H. Christensen, J. K. Nørskov, and T. Vegge, "Ammonia for hydrogen storage: challenges and opportunities," Journal of Materials Chemistry, vol. 18, no. 20, pp. 2304-2310, 2008.
    [26] U. B. Demirci, "Ammonia borane, a material with exceptional properties for chemical hydrogen storage," International Journal of hydrogen energy, vol. 42, no. 15, pp. 9978-10013, 2017.
    [27] S. Oyama and M. Boudart, "Ammonia Synthesis on Surface Layers of Molybdenum Nitride," Journal of the Research Institute for Catalysis Hokkaido University, vol. 28, no. 3, pp. 305-320, 1981.
    [28] A.-M. Alexander, J. Hargreaves, and C. Mitchell, "The denitridation of nitrides of iron, cobalt and rhenium under hydrogen," Topics in Catalysis, vol. 56, no. 18, pp. 1963-1969, 2013.
    [29] R. Michalsky, A. Avram, B. Peterson, P. H. Pfromm, and A. Peterson, "Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage," Chemical Science, vol. 6, no. 7, pp. 3965-3974, 2015.
    [30] M. Biesuz and V. M. Sglavo, "Chromium and vanadium carbide and nitride coatings obtained by TRD techniques on UNI 42CrMoS4 (AISI 4140) steel," Surface and Coatings Technology, vol. 286, pp. 319-326, 2016.
    [31] R. Michalsky and P. H. Pfromm, "An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production," The Journal of Physical Chemistry C, vol. 116, no. 44, pp. 23243-23251, 2012.
    [32] R. Michalsky, P. H. Pfromm, and A. Steinfeld, "Rational design of metal nitride redox materials for solar-driven ammonia synthesis," Interface Focus, vol. 5, no. 3, p. 20140084, 2015.
    [33] A. Jain, H. Miyaoka, S. Kumar, T. Ichikawa, and Y. Kojima, "A new synthesis route of ammonia production through hydrolysis of metal–Nitrides," International Journal of Hydrogen Energy, vol. 42, no. 39, pp. 24897-24903, 2017.
    [34] J. M. McEnaney et al., "Ammonia synthesis from N 2 and H 2 O using a lithium cycling electrification strategy at atmospheric pressure," Energy & Environmental Science, vol. 10, no. 7, pp. 1621-1630, 2017.
    [35] H. Eba, Y. Masuzoe, T. Sugihara, H. Yagi, and T. Liu, "Ammonia production using iron nitride and water as hydrogen source under mild temperature and pressure," International Journal of Hydrogen Energy, vol. 46, no. 18, pp. 10642-10652, 2021.
    [36] S. Giddey, S. Badwal, and A. Kulkarni, "Review of electrochemical ammonia production technologies and materials," International Journal of Hydrogen Energy, vol. 38, no. 34, pp. 14576-14594, 2013.
    [37] P. Peng, Y. Li, Y. Cheng, S. Deng, P. Chen, and R. Ruan, "Atmospheric pressure ammonia synthesis using non-thermal plasma assisted catalysis," Plasma Chemistry and Plasma Processing, vol. 36, no. 5, pp. 1201-1210, 2016.
    [38] A. Gómez-Ramírez, J. Cotrino, R. Lambert, and A. González-Elipe, "Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor," Plasma Sources Science and Technology, vol. 24, no. 6, p. 065011, 2015.
    [39] Y. Kubota, K. Koga, M. Ohno, and T. Hara, "Synthesis of ammonia through direct chemical reactions between an atmospheric nitrogen plasma jet and a liquid," Plasma and Fusion Research, vol. 5, pp. 042-042, 2010.
    [40] T. Haruyama et al., "Non-catalyzed one-step synthesis of ammonia from atmospheric air and water," Green Chemistry, vol. 18, no. 16, pp. 4536-4541, 2016.
    [41] T. Sakakura et al., "Excitation of H 2 O at the plasma/water interface by UV irradiation for the elevation of ammonia production," Green Chemistry, vol. 20, no. 3, pp. 627-633, 2018.
    [42] R. Hawtof, S. Ghosh, E. Guarr, C. Xu, R. Mohan Sankaran, and J. N. Renner, "Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system," Science Advances, vol. 5, no. 1, p. eaat5778, 2019.
    [43] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. John Wiley & Sons, 2005.
    [44] 鍾宛庭, "電漿功率效應於SKD11工具鋼之常壓電漿噴射束表面硬化處理," 碩士論文, 機械工程系, 國立臺灣科技大學, 2019.
    [45] K. L. Chopra and S. R. Das, "Why thin film solar cells?," Thin Film Solar Cells: Springer, 1983, pp. 1-18.
    [46] B. Eliasson and U. Kogelschatz, "Nonequilibrium volume plasma chemical processing," IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1063-1077, 1991.
    [47] A. W. Weimer, "Thermochemistry and kinetics," Carbide, Nitride and Boride Materials Synthesis and Processing: Springer, 1997, pp. 79-113.
    [48] U. Lommatzsch, D. Pasedag, A. Baalmann, G. Ellinghorst, and H. E. Wagner, "Atmospheric pressure plasma jet treatment of polyethylene surfaces for adhesion improvement," Plasma Processes and Polymers, vol. 4, no. S1, pp. S1041-S1045, 2007.
    [49] 國興技術. (2021). 常見之常壓電漿. Available: http://www.gxsmartplasma.com/mobile_ts/index/show/catid/29/id/69.html
    [50] 卡卡. (2020). 介電阻擋放電等離子體簡介. Available: https://heatask.com/sports/356666.html
    [51] 徐銘鍇、徐仁宏. (2011). 介電質屏蔽放電之特性與應用簡介. Available: https://www.materialsnet.com.tw/DocView.aspx?id=9499
    [52] S. Pekárek, "DC corona ozone generation enhanced by TiO2 photocatalyst," The European Physical Journal D, vol. 50, no. 2, pp. 171-175, 2008.
    [53] Y. Liu, Z. Wang, and C.-j. Liu, "Mechanism of template removal for the synthesis of molecular sieves using dielectric barrier discharge," Catalysis today, vol. 256, pp. 137-141, 2015.
    [54] 中文百科全書. 電暈放電. Available: https://www.newton.com.tw/wiki/%E9%9B%BB%E6%9A%88%E6%94%BE%E9%9B%BB
    [55] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, 1998.
    [56] J.-S. Chang, P. A. Lawless, and T. Yamamoto, "Corona discharge processes," IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1152-1166, 1991.
    [57] M. Hur and S. H. Hong, "Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod-and well-type cathodes," Journal of Physics D: Applied Physics, vol. 35, no. 16, p. 1946, 2002.
    [58] J. Trelles, C. Chazelas, A. Vardelle, and J. Heberlein, "Arc plasma torch modeling," Journal of Thermal Spray Technology, vol. 18, no. 5, pp. 728-752, 2009.
    [59] H. Plasma. Plasma Technology. Available: https://plasmatreatment.co.uk/pt/plasma-technology-overview
    [60] Y. Moriguchi et al., "Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration," PloS one, vol. 13, no. 3, p. e0194303, 2018.
    [61] L. Carrino, G. Moroni, and W. Polini, "Cold plasma treatment of polypropylene surface: a study on wettability and adhesion," Journal of Materials Processing Technology, vol. 121, no. 2-3, pp. 373-382, 2002.
    [62] H. Turkoglu Sasmazel, M. Alazzawi, and N. Kadim Abid Alsahib, "Atmospheric pressure plasma surface treatment of polymers and influence on cell cultivation," Molecules, vol. 26, no. 6, p. 1665, 2021.
    [63] L. S. Dolci et al., "Carboxyl Surface Functionalization of Poly (l‐lactic acid) Electrospun Nanofibers through Atmospheric Non‐T hermal Plasma Affects Fibroblast Morphology," Plasma Processes and Polymers, vol. 11, no. 3, pp. 203-213, 2014.
    [64] E. D. Yildirim, H. Ayan, V. N. Vasilets, A. Fridman, S. Guceri, and W. Sun, "Effect of dielectric barrier discharge plasma on the attachment and proliferation of osteoblasts cultured over poly (ε‐caprolactone) scaffolds," Plasma Processes and Polymers, vol. 5, no. 1, pp. 58-66, 2008.
    [65] C. Zhao, C. Li, H. Dong, and T. Bell, "Study on the active screen plasma nitriding and its nitriding mechanism," Surface and Coatings Technology, vol. 201, no. 6, pp. 2320-2325, 2006.
    [66] R. Grün and H.-J. Günther, "Plasma nitriding in industry—problems, new solutions and limits," Materials Science and Engineering: A, vol. 140, pp. 435-441, 1991.
    [67] T. Czerwiec, H. Michel, and E. Bergmann, "Low-pressure, high-density plasma nitriding: mechanisms, technology and results," Surface and Coatings Technology, vol. 108, pp. 182-190, 1998.
    [68] L. Yan, X. Zhu, J. Xu, Y. Gao, Y. Qin, and X. Bai, "A new approach to metal surface nitriding using dielectric barrier discharge at atmospheric pressure," Plasma Chemistry and Plasma Processing, vol. 25, no. 5, pp. 467-483, 2005.
    [69] 王憲柏, "以常壓電漿噴射束於SKD11模具鋼表面硬化處理之研究," 碩士論文, 機械工程系, 國立臺灣科技大學, 2018.
    [70] J.-Y. Guo, Y.-L. Kuo, and H.-P. Wang, "A facile nitriding approach for improved impact wear of martensitic cold-work steel using H2/N2 mixture gas in an AC pulsed atmospheric plasma jet," Coatings, vol. 11, no. 9, p. 1119, 2021.
    [71] G.-W. Lin et al., "Oxidation of sputtered metallic Sn thin films using N2 atmospheric pressure plasma jets," Materials Research Express, vol. 2, no. 1, p. 016504, 2015.
    [72] K.-L. Ou, Y.-H. Shih, C.-F. Huang, C.-C. Chen, and C.-M. Liu, "Preparation of bioactive amorphous-like titanium oxide layer on titanium by plasma oxidation treatment," Applied Surface Science, vol. 255, no. 5, pp. 2046-2051, 2008.
    [73] Tantec. The Process of Plasma Etching. Available: https://tantec.com/the-process-of-plasma-etching/
    [74] M. Darnon and N. Posseme, "4 - Plasma Etch Challenges for Gate Patterning," Plasma Etching Processes for CMOS Devices Realization, N. Posseme, Ed.: Elsevier, 2017, pp. 95-118.
    [75] J. H. Wang, "5 - Surface preparation techniques for biomedical applications," Coatings for Biomedical Applications, M. Driver, Ed.: Woodhead Publishing, 2012, pp. 143-175.
    [76] 廖峻德、翁志強、潘冠廷、侯孟新, "子計畫一:環境資源再生之電漿系統的開發(2/3)," 國立成功大學材料科學及工程學系(所)2006.
    [77] M. Watanabe, D. Shaw, and G. Collins, "Reduction of microtrenching and island formation in oxide plasma etching by employing electron beam charge neutralization," Applied Physics Letters, vol. 79, no. 17, pp. 2698-2700, 2001.
    [78] H. Michel, T. Czerwiec, M. Gantois, D. Ablitzer, and A. Ricard, "Progress in the analysis of the mechanisms of ion nitriding," Surface and Coatings Technology, vol. 72, no. 1-2, pp. 103-111, 1995.
    [79] C. Richmonds and R. M. Sankaran, "Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations," Applied Physics Letters, vol. 93, no. 13, p. 131501, 2008.
    [80] 鍾尚元, "常壓輝光放電電解回收處理高值化含銀、銅離子溶液之研究," 碩士論文, 機械工程系, 國立臺灣科技大學, 2019.
    [81] S. Babayan, J. Jeong, V. Tu, J. Park, G. Selwyn, and R. Hicks, "Deposition of silicon dioxide films with an atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 7, no. 3, p. 286, 1998.
    [82] Y.-L. Kuo and K.-H. Chang, "Atmospheric pressure plasma enhanced chemical vapor deposition of SiOx films for improved corrosion resistant properties of AZ31 magnesium alloys," Surface and Coatings Technology, vol. 283, pp. 194-200, 2015.
    [83] N. Jidenko, C. Jimenez, F. Massines, and J. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," Journal of Physics D: Applied Physics, vol. 40, no. 14, p. 4155, 2007.
    [84] E. Bormashenko, R. Grynyov, Y. Bormashenko, and E. Drori, "Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds," Scientific Reports, vol. 2, no. 1, pp. 1-8, 2012.
    [85] P. Attri, K. Ishikawa, T. Okumura, K. Koga, and M. Shiratani, "Plasma agriculture from laboratory to farm: A review," Processes, vol. 8, no. 8, p. 1002, 2020.
    [86] Paulo. (2017). Why Nitriding Steel is Growing in Popularity. Available: https://www.paulo.com/university-resources/nitriding-steel-growing-popularity/
    [87] 熱處理編輯委員會, 熱處理. 高立圖書有限公司, 2006.
    [88] E. Ghelloudj, H. Djebaili, M. T. Hannachi, A. Saoudi, and B. Daheche, "The influence of salt bath nitriding variables on hardness layer of AISI 1045 steel," Acta Metallurgica Slovaca, vol. 22, no. 3, pp. 188-194, 2016.
    [89] G. Krauss, "Steels: heat treatment and processing principles," ASM International, 1990, p. 497, 1990.
    [90] J. Wang et al., "Influence of time on the microstructure of AISI 321 austenitic stainless steel in salt bath nitriding," Surface and Coatings Technology, vol. 206, no. 15, pp. 3399-3404, 2012.
    [91] P. S. Charan, K. Jayakumar, D. Alankrutha, G. Sindhu, and R. Subbiah, "Assessment of wear properties on low temperature molten salt bath nitriding on austenitic stainless steel," Materials Today: Proceedings, vol. 27, pp. 1541-1544, 2020.
    [92] 余煥騰, 金屬熱處理學. 六合出版社, 1998.
    [93] 李勝隆, 熱處理-金屬材料原理與應用. 全華圖書股份有限公司, 2014.
    [94] N. D. Nam, N. A. Xuan, N. Van Bach, L. T. Nhung, and L. T. Chieu, "Control gas nitriding process: A review," J. Mech. Eng. Res. Dev, vol. 42, pp. 17-25, 2019.
    [95] G. G. Tibbetts, "Role of nitrogen atoms in``ion‐nitriding''," Journal of Applied Physics, vol. 45, no. 11, pp. 5072-5073, 1974.
    [96] K. Genel, M. Demirkol, and M. Capa, "Effect of ion nitriding on fatigue behaviour of AISI 4140 steel," Materials Science and Engineering: A, vol. 279, no. 1-2, pp. 207-216, 2000.
    [97] J. Michalski, "DC glow discharge in a gas under lowered pressure in ion nitriding of Armco iron," Journal of Materials Science Letters, vol. 19, no. 16, pp. 1411-1414, 2000.
    [98] 王玠龍, "常壓電漿噴射束於沃斯田體系不鏽鋼電漿輔助氮化之研究," 碩士論文, 機械工程系, 國立臺灣科技大學, 2020.
    [99] 金重勳, 熱處理. 台灣復文興業股份有限公司, 1998.
    [100] A. B. Dongil, "Recent progress on transition metal nitrides nanoparticles as heterogeneous catalysts," Nanomaterials, vol. 9, no. 8, p. 1111, 2019.
    [101] T. Wang, Z. Yan, C. Michel, M. Pera-Titus, and P. Sautet, "Trends and control in the nitridation of transition-metal surfaces," Acs Catalysis, vol. 8, no. 1, pp. 63-68, 2018.
    [102] Z. Qiao, D. Johnson, and A. Djire, "Challenges and opportunities for nitrogen reduction to ammonia on transitional metal nitrides via Mars-van Krevelen mechanism," Cell Reports Physical Science, vol. 2, no. 5, p. 100438, 2021.
    [103] V. Alexis, R. Frédéric, Q. Jean, and A. Eric, "Determination of Gray Cast Iron Age Strengthening by Nondestructive Methods: Effect of Alloying Elements," Journal of Materials Engineering and Performance, vol. 28, no. 7, pp. 4026-4033, 2019.
    [104] A. Svobodova, D. Walterova, and J. Vostalova, "Ultraviolet light induced alteration to the skin," Biomedical Papers-Palacky University in Olomouc, vol. 150, no. 1, p. 25, 2006.
    [105] 郭雲昊、卓康傑、林泱蔚. (2021). 光與能量. Available: https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=9c60b403-53ae-4500-b4ae-1ee8aa4bdeec
    [106] W. D. Callister Jr and D. G. Rethwisch, Fundamentals of Materials Science and Engineering: an Integrated Approach. John Wiley & Sons, 2020.
    [107] A. R. Franco Jr, G. Pintaúde, A. Sinatora, C. E. Pinedo, and A. P. Tschiptschin, "The use of a Vickers indenter in depth sensing indentation for measuring elastic modulus and Vickers hardness," Materials Research, vol. 7, pp. 483-491, 2004.
    [108] 能邁科技股份有限公司. XRD專業定量分析軟體. Available: https://www.tisamax.com/article/view/244
    [109] 羅聖全, "科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)," 科學研習, vol. 52-5, pp. 2-4, 2013.
    [110] T. F. S. Inc. (2017). 第一次接觸IC就上手!離子層析法(Ion Chromatography, IC)原理和基礎知識. Available: https://www.thermofisher.com/tw/zt/home/new-ideas/chromatography-and-mass-spectrometry-line-blog/ic-for-dummies.html
    [111] 台灣美創股份有限公司. 離子層析儀. Available: https://www.metrohm.com/zh-tw/products-overview/ion_chromatography/
    [112] 林欣慧. (2016). 離子層析 (Ion Chromatography). Available: https://highscope.ch.ntu.edu.tw/wordpress/?p=71424
    [113] R. H. Worden, "ANALYTICAL METHODS | Geochemical Analysis (Including X-ray)," in Encyclopedia of Geology, R. C. Selley, L. R. M. Cocks, and I. R. Plimer, Eds. Oxford: Elsevier, 2005, pp. 54-76.
    [114] F. El-Hossary, N. Negm, S. Khalil, and M. Raaif, "Surface modification of titanium by radio frequency plasma nitriding," Thin Solid Films, vol. 497, no. 1-2, pp. 196-202, 2006.
    [115] B. Paosawatyanyong, J. Pongsopa, P. Visuttipitukul, and W. Bhanthumnavin, "Nitriding of tool steel using dual DC/RFICP plasma process," Surface and Coatings Technology, vol. 306, pp. 351-357, 2016.
    [116] C. Foerster, F. Serbena, S. Da Silva, C. Lepienski, C. d. M. Siqueira, and M. Ueda, "Mechanical and tribological properties of AISI 304 stainless steel nitrided by glow discharge compared to ion implantation and plasma immersion ion implantation," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 257, no. 1-2, pp. 732-736, 2007.
    [117] T. Nakamoto, N. Shirakawa, N. Ueda, Y. Miyata, and T. Sone, "Plasma nitriding to selective laser sintering parts made of SCM430 powder," Surface and Coatings Technology, vol. 202, no. 22-23, pp. 5484-5487, 2008.
    [118] Y. Li et al., "Plasma nitriding of AISI 304 stainless steel in cathodic and floating electric potential: influence on morphology, chemical characteristics and tribological behavior," Journal of Materials Engineering and Performance, vol. 27, no. 3, pp. 948-960, 2018.
    [119] A. Farghali and T. Aizawa, "Phase transformation induced by high nitrogen content solid solution in the martensitic stainless steels," Materials Transactions, vol. 58, no. 4, pp. 697-700, 2017.
    [120] X. Qin, X. Guo, J. Lu, L. Chen, J. Qin, and W. Lu, "Erosion-wear and intergranular corrosion resistance properties of AISI 304L austenitic stainless steel after low-temperature plasma nitriding," Journal of Alloys and Compounds, vol. 698, pp. 1094-1101, 2017.
    [121] M. Sahin and C. Sevil, "Investigation of properties of ion‐nitrided AISI 304 austenitic‐stainless steel," Industrial Lubrication and Tribology, vol. 63, no. 5, pp. 359-366, 2011.
    [122] J. Wang, Y. Lin, J. Yan, D. Zeng, R. Huang, and Z. Hu, "Modification of AISI 304 stainless steel surface by the low temperature complex salt bath nitriding at 430° C," ISIJ International, vol. 52, no. 6, pp. 1118-1123, 2012.
    [123] H. Ohmi, J. Sato, Y. Shirasu, T. Hirano, H. Kakiuchi, and K. Yasutake, "Significant improvement of copper dry etching property of a high-pressure hydrogen-based plasma by Nitrogen Gas Addition," ACS Omega, vol. 4, no. 2, pp. 4360-4366, 2019.
    [124] M. Sode, W. Jacob, T. Schwarz-Selinger, and H. Kersten, "Measurement and modeling of neutral, radical, and ion densities in H2-N2-Ar plasmas," Journal of Applied Physics, vol. 117, no. 8, p. 083303, 2015.

    無法下載圖示 全文公開日期 2027/08/22 (校內網路)
    全文公開日期 2027/08/22 (校外網路)
    全文公開日期 2027/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE