簡易檢索 / 詳目顯示

研究生: 沈威廷
Wei-Ting Shen
論文名稱: 以熱蒸發反應法於不同觸媒基板上成長氮化鎵一維奈米材料
The Growth of GaN nanowires on different catalyst substrates by reacting thermally evaporated Ga and ammonia
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 朱瑾
Jinn P. Chu
郭永綱
Yung-Kang Kuo
林惠娟
Huey-Jiuan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 112
中文關鍵詞: 氮化鎵奈米線熱反應蒸發法金觸媒
外文關鍵詞: Evaprating reaction, Gold Catalyst, Gallium nitride nanowire
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,發藍光的LED 已是目前最重要的光電元件,由於GaN材料製程上的進步,使得藍光GaN/GaInN 發光二極體研製成功,III族氮化物材料已經逐漸成為半導體領域中一顆耀眼的新星。III族氮化物因製備條件的不同可為閃鋅礦結構,也可為纖鋅礦(Wurtzite)結構,閃鋅礦結構的III族氮化物為間接半導體,而纖鋅礦結構的III族氮化物為直接半導體,具有很好的發光性能。
    本實驗於矽基板上濺鍍不同觸媒層,並將鎵塊圍繞基板四周圍,藉由熱蒸發反應法,於600℃~900℃成長氮化鎵奈米線。其間並嘗試通入少量氫氣希望降低其成長溫度,實驗中也將鍍有雙層觸媒的基板經退火處理,再進行一維材料成長並觀察退火溫度對成長形態是否造成影響。
    實驗結果發現,以熱反應蒸發法於覆有Au、Au/Al、Au/In的矽基板上,當溫度800 oC,氨氣流量100 sccm、氮氣流量50 sccm,製備出氮化鎵奈米線,其長度約數微米,直徑約40 – 60 nm,從TEM分析中,說明了在氮化鎵奈米線的頂端無觸媒形成,此結果證明,金觸媒會在基板上形成成核點,使鎵蒸氣溶入形成Au-Ga合金,有利形成氮化鎵奈米線。
    能否成長氮化鎵奈米線的關鍵,我們推論適當的觸媒種類、氮化鎵適合成長溫度、反應期間通入的氣體種類為重要因素。


    Due to the progress of the manufacturing GaN process, GaN/GaInN light-emitting diodes (LEDs) have successfully developed and are the most important electrooptic component. Therefore, group III nitrides have become an important field of semiconductor materials. Group III nitrides have two kinds of structures, zinc blende and wurtzite, depending upon the process conditions. Zinc blende belongs to an indirect semiconductor and wurtzite with good luminescent properties a direct one.
    We report an approach to the synthesis of GaN nanowires on different metallic layer-coated substrate through the reaction of Ga with NH3 gas at growth temperatures in the range of 600oC~900 oC. The process parameters such as the different catalyst substrates, the reactive gas, the growth temperature, the annealing temperature were investigated to study the growth of one-dimensional GaN nanowires.
    1-D GaN nanowires with a diameter of 40 – 60 nm and a length of several micrometers were grown on the Au,Au/Al, Au/In catalyzed substrates at growth temperature of 800oC, an ammonia flow rate of 100 sccm, and a nitrogen flow rate of 50 sccm. The different metallic layer-coated substrates were obtained by the evaporating reaction method. No catalysts at the tip of GaN nanowires were observed by TEM and a growth mechanism of self-catalytic growth was proposed. In this mechanism, liquid gold catalyst provides nucleation points on substrate, gallium vapor dissolutes into the gold catalyst and becomes Au-Ga alloy, and the excess Ga in alloy provides the sites for self-catalytic reaction to form the GaN nanowires.
    The major factors for successfully growing the 1-D GaN involve the selections of the catalyst, the growth temperature, the reactants, annealing temperature of the catalytic substrate etc.

    中文摘要 I Abstract III 誌謝 V 圖目錄 XII 表目錄 XVIII 第一章 緒論 1 1-1前言 1 1-2氮化鎵一維材料之應用 3 1-3 研究動機 4 第二章 文獻回顧與理論基礎 6 2-1 一維材料製備方法 6 2-1-1 模板成長 6 2-1-2 氣-液-固機制(VLS) 6 2-1-3 溶液-液-固制(SLS) 8 2-1-4 水熱法 9 2-1-5 氧化物輔助成長 10 2-1-6 氣-固機制(VS) 11 2-2 化學氣相沉積法 12 2-3 氮化鎵材料特性 16 3-1 實驗設備說明 41 3-1-1鍍金機 41 3-1-2 DC濺鍍機( DC-Sputter ) 41 3-1-3管型加溫爐 41 3-2 實驗藥品選擇 42 3-3 實驗流程 42 3-3-1 製作濺鍍靶材 42 3-3-2 濺鍍金屬層 43 3-3-3 將鎵錠分割成小鎵塊 43 3-3-4 將小鎵塊放於矽基板四周 43 3-3-5 腔體加熱 44 3-4 一維材料特性分析儀器 44 3-4-1掃瞄式電子顯微鏡 44 3-4-2高解析度場發射掃描式電子顯微鏡 45 3-4-3 X光粉末繞射儀系統 45 3-4-4 穿透式電子顯微鏡 46 3-4-5 雷射螢光/光致發光光譜儀 46 第四章 結果與討論 49 4-1 各種觸媒的比較 49 4-2 不同成長溫度的比較 58 4-3 反應氣體中添加氫氣 80 4-4 於氧化鋁基板上反應 86 4-5 各種觸媒退火後之比較 91 4-6 氮化鎵奈米線成長機制探討 97 第五章 結論 106 參考文獻 107

    [1] Richard Feynman, J. Micro. Syst., 160 (1992)
    [2] C. M. Balkas, R. E. Davis, J. Am. Ceram. Soc., 79, pp.2309 (1996)
    [3]陳貴賢、吳季珍, 中央研究院原分所, 國立成功大學化工系, 物理雙月刊(廿三卷六期)2001年12月
    [4] S. Iijima, “Helical microtubules of graphitic carbon” , Nature, vol. 354, no. 6348, pp. 56–58 (1991)
    [5] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors” , Applied Physics Letters, 73, pp.2447 (1998)
    [6] http://web.mit.edu/ibita/www/MRS
    [7] P. Kim, C. M. Lieber, “Nanotube Nanotweezers” , Science, 286, pp.2148 (1999)
    [8] Y. Nakayama, H. Nishijima, K. I Hohmura, S. H. Yoshimura, “Microprocess for fabricating carbon-nanotube probes of a scanning probe microscope” , J. Vac. Sci. Technol., B18, pp.661 (2000)
    [9] J. Johnson, H. Yan, R. Schaller, L. Haber, R. Saykally, P. Yang, “Single Nanowire Lasers” , J. Phys. Chem. B, 105, pp.11387 (2001)
    [10]游志樸,半導體材料,新文京開發出版股份有限公司 (2003)。
    [11] Chien-Chao Chiu, Chia-Yun Chen, Nyan-Hwa Tai, Chuen-Horng Tsai, “Growth of high-quality single-walled carbon nanotubes through the thermal chemical vapor deposition using co-sputtering Fe–Mo films as catalysts” , Surface & Coatings Technology 200, pp.3199–3202 (2006)
    [12] Peidong Yang and Charles M. Lieber, “Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites” , J .Mater.Res. ,12, pp.2981 (1997)
    [13]藍天蔚,「氣相沉積氮化物奈米線的成長與研究」,碩士論文,國立中央大學, 桃園 (2005)。
    [14] T.J.Trentler, K.M.Hickman, S.C.Geol, A.M.Viano, P.C.Gibbons, W.E.Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth” , Science, 270, pp.1791 (1995).
    [15] Younan Xia,Peidong Yang, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv.Mater. ,15, pp.353 (2003)
    [16] Heng Wu and William E.Buhro, “Solution-Liquid-Solid Growth of Soluble GaAs Nanowires” , Adv.Mater. ,15, pp.416 (2003)
    [17]陳彥志,「氧化鎵奈米線及氧化銦顆粒成長及分析」,碩士論文,國立成功大學,台南(2004)。
    [18] Jinmin Wang and Lian Gao, “Hydrothermal synthesis and photoluminescence properties of ZnO nanowires” , Solid State Communications 132, pp.269–271 (2004)
    [19] G.H. Yue, P.X. Yan, D. Yan, X.Y. Fan, M.X. Wang, D.M. Qu and J.Z. Liu, “Hydrothermal synthesis of single-crystal ZnS nanowires” , Appl. Phys. A 84, pp.409–412 (2006)
    [20] S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, “Oxide-assisted semiconductor nanowire growth” , Mrs Bulletin, vol. 24, pp. 36-42 (1999)
    [21] C. C. Tang, S. S. Fan, H. Y. Dang, P. Li, and Y. M. Liu, “Simple and high-yield method for synthesizing single-crystal GaN nanowires” Applied Physics Letters Vol.77, pp.1961-1963 (2000)
    [22]. L. X. Zhao, G. W. Meng, X. S. Peng, X. Y. Zhang, and L. D. Zhang, “Large-scale synthesis of GaN nanorods and their photoluminescence” , Applied Physics a-Materials Science & Processing, vol. 74, pp. 587-590 (2002)
    [23] S. H. Lee, Y. H. Mo, K. S. Nahm, E.-K. Suh, and K. Y. Lim, “Growth and Characterization of GaN Nanowires on Si Substrate Using Ni Catalyst in a Chemical Vapor Deposition Reactor” , phys. Stat, sol. (c), 0, No.1, pp.148–151 (2002)
    [24] Heon-Jin Choi, Dae-Hee Kim, Tae-Geun Kim, Jung-Chul Lee, Yun-Mo Sung, “Various one-dimensional GaN nanostructures formed by non-catalytic routes” , J Electroceram 17, pp.221–225 (2006)
    [25] X.M. Cai, F. Ye, S.Y. Jing, D.P. Zhang, P. Fan, E.Q. Xie, “CVD growth of InGaN nanowires” , Journal of Alloys and Compounds 467, pp.472–476 (2009)
    [26]儀科中心簡訊76期,中華民國95年8月31日出版。
    [27] Weiqiang Han, Shoushan Fan, Qunqing Li, Yongdan Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction” , Science, Vol 277, pp.1287-1289 (1997)
    [28] G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, and L. Li, “Large-scale synthesis of single crystalline gallium nitride nanowires” , Applied Physics Letters, Vol.75, pp.2455-2457 (1999)
    [29] Xiaolong Chen, Jianye Li, Yongge Cao, Yucheng Lan, Hui Li, Meng He, Chaoying Wang, Ze Zhang, and Zhiyu Qiao, “Straight and Smooth GaN Nanowires” , Adv. Mater., 12, No.19, pp.1432-1434 (2000)
    [30] Chia-Chun Chen, Chun-Chia Yeh, Chun-Ho Chen, Min-Yuan Yu, Hsiang-Lin Liu, Jih-Jen Wu, Kuei-Hsein Chen, Li-Chyong Chen, Jin-Yuan Peng, and Yang-Fang Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires” , J. Am. Chem. Soc., 123, pp.2791-2798 (2001)
    [31] Hwa-Mok Kim, Doo Soo Kim, Young Shin Park, Deuk Young Kim, Tae Won Kang, and Kwan Soo Chung, “Growth of GaN nanorod by a Hydride Vapor Phase Epitaxy Method” , Adv. Mater., 14, No.13-14, pp.991- 993 (2002)
    [32] Ko-Wei Chang and Jih-Jen Wu, “Low-Temperature Catalytic Synthesis of Gallium Nitride Nanowires” , J. Phys. Chem. B, 106, pp.7796-7799 (2002)
    [33] Junqing Hu, Yoshio Bando, Dmitri Golberg, and Quanlin Liu, “Gallium Nitride Nanotubes by the Conversion of Gallium Oxide Nanotubes” , Angew. Chem., 115, pp.3617–3621 (2003)
    [34] Hwa-Mok Kim, Tae Won Kang, and Kwan Soo Chung, “Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods” , Adv. Mater., 15, No.7-8, pp.567-569 (2003)
    [35] Xihong Chen, Jun Xu, R. M. Wang, and Dapeng Yu, “High-Quality Ultra-Fine GaN Nanowires Synthesized Via Chemical Vapor Deposition” , Adv. Mater., 15, No.5, pp.419-421 (2003)
    [36] Hung-Min Lin Yong-Lin Chen, Jian Yang, Yao-Chung Liu, Kai-Min Yin, Ji-Jung Kai, Fu-Rong Chen, Li-Chyong Chen, Yang-Fang Chen, and Chia-Chun Chen, “Synthesis and Characterization of Core-Shell GaP@GaN and GaN@GaP Nanowires” , Nano Letters, Vol. 3, No. 4 , pp.537-541 (2003)
    [37] Zon-Huang Lan, Chi-Hui Liang, Chih-Wei Hsu, Chien-Ting Wu, Huang-Min Lin, Sandip Dhara, Kuei-Hsien Chen, Li-Chyong Chen, and Chia-Chun Chen, “Nanohomojunction (GaN) and Nanoheterojunction (InN) Nanorods on One-dimensional GaN Nanowires Substrates” , Advanced Functional Materials 14, No. 3, pp.233-237 (2004)
    [38] Jianye Li, Chenguang Lu, Benjamin Maynor, Shaoming Huang, and Jie Liu, “Controlled Growth of Long GaN Nanowires from Catalyst Patterns Fabricated by “Dip-Pen” Nanolithographic Techniques” , Chem. Mater., 16, pp.1633-1636 (2004)
    [39] Zhou Yu, Zhimei Yang, Shuai Wang, Yong Jin, Jun Gang Liu, Min Gong, and Xiaosong Sun, “Growth of GaN Nanorods via Au Catalyst-Assisted CVD” , Chem. Vap. Deposition, 11, pp.433-436 (2005)
    [40] Baodan Liua, Yoshio Bando, Chengchun Tang, Fangfang Xu, and Dmitri Golberg “Quasi-aligned single-crystalline GaN nanowire arrays”Applied Physics Letters, 87, pp.073106, (2005)
    [41] Stephen D. Hersee, Xin yu Sun, and Xin Wang, “The Controlled Growth of GaN Nanowires” , Nano Letters, Vol. 6, No. 8, pp.1808-1811 (2006)
    [42] Hongwei Li, Alan H. Chin, and Mahendra K. Sunkara, “Direction-Dependent Homoepitaxial Growth of GaN Nanowires” , Adv. Mater., 18, pp.216-220 (2006)
    [43] Hailin Qiu, Chuanbao Cao, Xu Xiang, Yunhong Zhang, Jie Li, Hesun Zhu, “Large scale tapered GaN rods grown by chemical vapour deposition” , Journal of Crystal Growth, 290, pp.1-5 (2006)
    [44] A.B. Djurišić K.H. Tam , Y.F. Hsu , S.L. Zhang , M.H. Xie , W.K. Chan, “GaN nanowires—influence of the starting material on nanowire growth” , Thin Solid Films, 516, pp.238–242 (2007)
    [45] Y. Inoue, A. Tajima, S. Takeda, A. Ishida, H. Mimura, and S. Sakakibara, “Growth and field emission of GaN nanowires grown by metal organic chemical vapour deposition” , phys. stat. sol. (c), 4, No. 7, pp.2366– 2370 (2007)
    [46] R. Ghosh and D. Basak, “Growth of nano- and microstructured GaN in bulk powder and on substrate”, phys. stat. sol. (a), 204, No. 10, pp.3256–3265 (2007)
    [47] Y. Inoue, A. Tajima, A. Ishida, and H. Mimura, “Morphology control of GaN nanowires by vapor-liquid-solid growth” , phys. stat. sol. (c) 5, No.9, pp.3001–3003 (2008)
    [48] V. Gottschalch, G.Wagner, J.Bauer, H.Paetzelt, M.Shirnow, “VLS growth of GaN nanowires on various substrates” , Journal of Crystal Growth, 310, pp.5123–5128 (2008)
    [49] Wen-Chi Hou, Liang-Yih Chen, Franklin Chau-Nan Hong, “Fabrication of gallium nitride nanowires by nitrogen plasma” , Diamond & Related Materials, 17, pp.1780–1784 (2008)
    [50] Wen Chi Hou and Franklin Chau-Nan Hong, “Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires” , Nanotechnology 20, pp.055606 (2009)

    QR CODE