簡易檢索 / 詳目顯示

研究生: 彭宣穎
Hsuan-Ying Peng
論文名稱: 氮化鎵奈米線成長機制探討與其在薄膜電晶體上的應用
Growth mechanism study of gallium nitride nanowire and its application on thin film transisitor
指導教授: 陳良益
Liang-Yih Chen
口試委員: 吳季珍
none
洪儒生
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 161
中文關鍵詞: 氮化鎵
外文關鍵詞: GaN
相關次數: 點閱:238下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主要是應用高溫爐法,以鎵金屬及氨氣做為鎵與氮的來源,於鍍金的矽基板上成長氮化鎵奈米線。在實驗參數設計上,則藉由控制基板的位置、鎵源的汽化溫度,來改變提供鎵源的量,同時由不同的反應氣體流量與不同的成長時間,來探討氮化鎵奈米線的成長機制。在分析上,則藉由掃瞄式電子顯微鏡、X-光繞射分析、穿透式電子顯微鏡,以及拉曼光譜與螢光光譜對所成長的奈米線進行形態、結構與光學性質的分析。
    由分析結果可發現,氮化鎵奈米線主要以氣-液-固機制進行成長,在結構上符合鋅鐵礦結構,但有趣的是,隨著不同的成長時間可發現:位在奈米線頂端的金觸媒會有逐漸消失的現象,而當金觸媒消失後,成長的機制將轉變成於奈米線側壁進行化學氣相沉積。為進一步瞭解金觸媒消失的原因,在實驗中藉由控制鎵金屬汽化量的速率來進行探討。由實驗的結果中可知:鎵金屬汽化的速率與金觸媒的遷移有很密切的關係,且反應氣體氨氣的質量流率,也會影響到金觸媒的遷移現象。因此,在本研究中提出兩種可能的機制,來說明氮化鎵奈米線成長時,金觸媒遷移的現象。


    In the study, a two-zone horizontal quartz furnace was employed to grow gallium nitride nanowires (GaN-NWs) on gold-coated Si (100) substrate and gallium metal and ammonium (NH3) were supplied in the growth step. In experimental, substrate location, gallium vaporized temperature were used to control gallium vapor supply amount. In addition, ammonium flow rate and growth time were also used to study the GaN-NWs growth mechanism. Here, scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Raman spectroscopy and photoluminescence were used to characterize the morphology, structure and optical properties of GaN-NWs, respectively.
    From analysis results, we found that GaN-NWs with wurtzite structure via vapor-liquid-solid (VLS) growth mechanism. Interestingly, Au-catalyst will disappear with growth time and the growth mechanism will change from VLS mechanism to lateral chemical vapor deposition to increase the diameter of GaN-NWs. In order to understand the detail of disappearance of Au-catalysts during GaN-NWs growth, vaporization rate of Ga was used as parameter to control amount of Ga. The result showed that vaporization rates of Ga and reactive gas flow rates would affect the migration of Au-catalyst. Here, two possible mechanisms were proposed to explain the migration of Au-catalyst during GaN-NWs growth.

    中文摘要 I Abstract II 誌謝 III 目錄 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 III-V族半導體材料發展與應用 1 1.2 薄膜電晶體 4 1.3 研究動機 5 第二章 理論基礎與文獻回顧 7 2.1氮化鎵 7 2.2一維奈米線之成長機構 10 2.2.1氣-液-固機制 12 2.2.2氣-固機制與氣-固-固機制 19 2.3介電泳 22 2.3.1誘導偶極矩 22 2.3.2介電泳作用力 23 2.4薄膜電晶體的發展與應用 26 2.4.1金氧半場效應電晶體 26 2.4.2氫化非晶矽薄膜電晶體 29 2.4.3多晶矽薄膜電晶體 29 2.4.4有機薄膜電晶體 31 2.4.5奈米線薄膜電晶體 31 2.4.6歐姆接觸 34 2.5薄膜電晶體之特性參數 36 2.5.1載子遷移率 36 2.5.2臨界電壓 38 2.5.3次臨界擺幅 38 2.5.4開關電流比 39 第三章 實驗方法與步驟 42 3.1 實驗流程圖 42 3.2 實驗用藥品與氣體 43 3.2.1實驗用藥品 43 3.2.2實驗用基板 45 3.2.3實驗用氣體 45 3.3實驗設備 46 3.3.1奈米線成長系統 46 3.3.2黃光微影設備 47 3.4奈米線成長方法 50 3.4.1試片清洗 50 3.4.2試片鍍金 50 3.4.3一維氮化鎵奈米線成長步驟 50 3.5薄膜電晶體製造 52 3.5.1黃光微影製程 52 3.5.2氮化鎵奈米線薄膜電晶體的製造 53 3.6特性分析之儀器介紹 54 3.6.1場發射掃描式電子顯微鏡分析 54 3.6.2 X光繞射儀 55 3.6.3分析式穿透式電子顯微鏡分析 56 3.6.4拉曼散射光譜儀 57 3.6.5光子激發光譜儀 59 第四章 結果與討論 60 4.1不同載送氣體與反應氣體下之氮化鎵奈米線成長 60 4.1.1奈米線之形態探討 61 4.1.2奈米線之結構探討 62 4.2不同時間下通入反應氣體之氮化鎵奈米線成長 67 4.2.1奈米線之形態探討 68 4.3不同成長時間之氮化鎵奈米線成長 71 4.3.1奈米線之形態探討 71 4.3.2奈米線之結構探討 72 4.4不同基板位置之氮化鎵奈米線成長 80 4.4.1奈米線之形態探討 81 4.4.2奈米線之結構探討 82 4.5不同Ga源汽化溫度對氮化鎵奈米線成長之影響 92 4.5.1奈米線之形態探討 93 4. 5.2奈米線之結構探討 93 4.5.3奈米線之光譜分析 97 4.6不同Ga金屬汽化溫度與低反應氣體流量對氮化鎵奈米線成長的影響 109 4.6.1奈米線之形態探討 110 4.6.2奈米線之結構探討 111 4.6.3奈米線之光譜分析 114 第五章 結論 129 第六章 參考文獻 131

    [1] X. M. Cai, A. B. Djurišić, and M. H. Xie, C. S. Chiu, S. Gwo, Appl. Phys. Lett. 87, 183103 (2005)
    [2] F. Ye, X.M. Cai, X. M. Wang, E. Q. Xie, J. Cryst. Growth, 304, 333 (2007)
    [3] V. N. Tondare, C. Balasubramanian, S. V. Shende, D. S. Joag, V. P. Godbole, S. V. Bhoraskar, Appl. Phys. Lett. 80, 4813 (2002)
    [4] www.ledtime.net/.../2008-01-04/tech_1387.html
    [5] 游志樸,半導體材料,第242頁,台灣,92
    [6] S. Yoshida and J. Suzuki, J. Appl. Phys. 84, 2940 (1998)
    [7] S. Nakamura, T. Azuhata, K. Shimada, T.Deguchi, T. Sota, K. Suzuki, S. Chichibu, J. Appl. Phys. 38, 151 (1999)
    [8] S. Strite, M.E. Lin and M.Morkoc, Thin Solid Films, 231, 197 (1993)
    [9] J. H. Edgar, Properties of Group III Nitrides (EMIS Datareviews Series No.11, INSPEC, London, 1994)
    [10] B. Gil, Group III Nitride Semiconductor Compounds-Physics and Applications (Clarendon Press, Oxford, 1998)
    [11] J. Camacho, P. V. Santos, F. Alsina, M. Ramsteiner, K. H. Ploog, A. Cantarero, H. Oblosh, J. Wagner, J. Appl. Phys. Lett. 94, 1892 (2003)
    [12] J. B. Hannon, S. Kodambaka, F.M. Ross & R. M. Tromp, Nature Letters, 440, 69 (2006)
    [13] Kazuki Nagashima, Takeshi Yanagida, Keisuke Oka, Hidekazu Tanaka, and Tomoji Kawai, Appl. Phys. Lett. 93, 153103 (2008)
    [14] A. J. Steckl, R.Birkhahn, Appl. Phys. Lett. 73, 1700 (1998)
    [15] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)
    [16] S. Yoshida, J. Suzuki, J. Appl. Phys. 84, 2940 (1998)
    [17] H. Yan, R. He, J. Johnson, M. Law, R. J. Saykally, P.D. Yang, J. Am. Chem. Soc. 125, 4728 (2003)
    [18] H. P. Maruska, J. J. Tietjen, Appl Phys. Lett. 15, 327 (1969)
    [19] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. Denbaars, J. S. Speck, Appl. Phys. Lett. 68, 643 (1996)
    [20] S. Yoshida, S. Misawa, S. Gonda, Appl. Plys. Lett. 42, 427 (1983)
    [21] H. Amano, N. Sawaki, I. Akasaki, Y. Toyota, Appl. Phys. Lett. 48, 353 (1986)
    [22] S. Nakamura, Y. Harada, M. Seno, J. Appl. Phys. 58, 2021 (1991)
    [23] B. O. Dabbousi, M.G. Bawendi, O.Onitsuka, M. F. Rubner, Appl. Phys. Lett. 66, 1316 (1995)
    [24] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997)
    [25] Y. Li, G. W. Meng, and L. D. Zhang, F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
    [26] Y. Cui, C. M. Lieber, Science, 291, 851 (2001)
    [27] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Ying, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)
    [28] P. Krishna, R. C. Marshali, J. Cryst. Growth, 9, 319 (1971)
    [29] C. Y. Nam, D. Tham, and J. E. Fishcher, Appl. Phys. Lett. 85, 5676 (2004)
    [30] K. A. Dick, K. Deppert, L. S. Karlsson, L. P. Wallenberg, L. Samuelson, W. Seifert, Adv. Funct. Mater. 15, 1603 (2005)
    [31] R. S. Wagner, W. C, Ellis, Appl. Phys. Lett. 4, 86 (1964)
    [32] Y. Wu, P. Yang, Chem. Mater. 12, 605 (2000)
    [33] Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
    [34] V. Schmidt, U. Gösele, Science, 316, 698 (2007)
    [35] S. Kodambaka, J. Tersoff, M. C. Reuter, F. M. Ross, Science, 316, 729 (2007)
    [36] R. White, M. E. Welland, J. Appl. Phys. 102, 104301 (2007)
    [37] X. F. Duan, C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000)
    [38] C. C. Chen, C. C. Yeh, C. H. Chen, . Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, Y. F. Chend, J. Am. Chem. Soc. 123, 2791 (2001)
    [39] Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng, Chem. Phys. Lett. 357, 314 (2002)
    [40] Y. J. Chen, J. B. Li, Y. S. Han, X. Z. Yang, J. H. Dai, J. Cryst. Growth, 245, 163 (2002)
    [41] Martien I. den Hertog, Jean-Luc Rouviere, Florian Dhalluin, Pierre J. Desre, Pascal Gentile, Pierre Ferret, Fabrice Oehler, and Thiery Baron, Nano Letter, 8, 1544 (2008)
    [42] S. A. Dayeh, E. T. Yu, D. Wang, Nano Letter, 7, 2486 (2007)
    [43] Pohl, H. A., Dielectrophoresis : the behavior of neutralmatter in nonuniform electric fields, 1978,Cambridge University Press.
    [44] http://www.ibmm-microtech.co.uk/pages/science/basic.htm
    [45] 施敏,半導體元件物理與製造技術,第317頁,台灣,91
    [46] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, IEEE Electron Device Letters, 48, 845 (2001)
    [47] S. D. Brotherton, J. R. Ayres, and M. J. Trainor, J. Appl. Phys. 79, 895 (2006)
    [48] C. H. Fa, and T. T. Jew, IEEE Trans. Electron Devices, 13, 290 (1966)
    [49] Y. Oana, Journal of the SID, 9, 169 (2001)
    [50] Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T. Mano, SID DIG. 156 (1983)
    [51] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, IEEE Trans. Electron Devices, 38, 1781 (1991)
    [52] S. Batra, Extended Abstracts, 94-2, in Electrochemical Soc. Fall Mtg., Miami Beach, FL, Oct. 677 (1994)
    [53] R. Mizuki, T. Mstsuda, J. S. Nakamura, Y. Takagi, and J. Yoshida, IEEE Electron Device Letters, 51, 204 (2004)
    [54] W. G. Hawkins, IEEE Trans. Electron Devices, 33, 477 (1986)
    [55] Z. Meng et al. International Electron Devices Meeting. Tech. Dig. 755 (2001)
    [56] S. W. Lee and S. K. Joo, IEEE Electron Device Letter, 17, 160 (1996)
    [57] S. W. Lee et al. IEEE Electron Device Letter, 17, 407 (1996)
    [58] T. Ji, J. Xie, and V. K. Varadan, Proc. Of SPIE , 5763, 77
    [59] C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gosele, L. Samuelson, Mater. Today, 9, 28 (2006)
    [60] A. Javey, S. W. Nam, R. S. Friedman, H. Yan, C. M. Lieber, Nano Letter, 7, 773 (2007)
    [61] M. C. McAlpine, R. S. Friedman, S. Jin, K. h. Lin, W. U. Wang, C. M. Lieber, Nano Letter, 3, 1531 (2003)
    [62] E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Letter, 7, 2463 (2007)
    [63] Eric N. Dattoli, Qing Wan, Wei Guo, Yanbin Chen, Xiaoqing Pan, Wei Lu, Nano Letter, 7, 2463 (2007)
    [64] Wenyong Wang, Hao D. Xiong, Monica D. Edelstein, David Gundlach, John S. Suehle, Curt A. Richter, J. Appl. Phys. 101, 043313 (2007)
    [65] J. A. Bardwell, G. I. Sproule, Y. Liu, H. Tang, J. B. Webb, J. Fraser, and P. Marshall, J. Vac. Sci. Technol. B, 20, 1444 (2002)
    [66] Jong Kyu Kim, Jong-Lam Lee, Jae Won Lee, Hyun Eoi Shin, Yong Jo Park, and Taeil Kim, Appl. Phys. Lett. 73, 2953 (1998)
    [67] D. A. Neaman, Semiconductor Physics and Devices, 2002, McGraw-Hill
    [68] S. M. Sze, Semiconductor devices physics and technology, 2001, John Wiley & Sons press
    [69] R. A. Street, D. Knipp, A. R. V lkel, Appl. Phys. Lett. 80, 9 (2002)
    [70] Cheng, G. S. Zhang, L. D. Zhu, Y. Fei, G. T. Li, L., Mo, C. M. Mao, Y. Q. Appl. Phys. Lett. 75, 2455 (1999)
    [71] 黃惠忠, 奈米材料分析, 台灣, 2003
    [72] F. KAWAMURA, M. IMADE, M. YOSHIMURA, Y. MORI, T. SASAKI, Japan. J. Appl. Phys. 44, L1 (2005)

    QR CODE