簡易檢索 / 詳目顯示

研究生: 周明憲
Ming-Hsien Chou
論文名稱: 以遞迴最小平方法結合無跡卡爾曼濾波器實現鋰離子電池參數、充電狀態、健康狀態及溫度之即時估測
Real-time Estimation of Lithium-ion Battery Parameters, State of Charge, State of Health and Temperature based on Recursive Least Square Method and Unscented Kalman Filter
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 林紀穎
Chi-Ying Lin
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 184
中文關鍵詞: 鋰離子電池即時估測無跡卡爾曼濾波器遞迴最小平方法
外文關鍵詞: Lithium-ion battery, Real-time estimation, Unscented kalman filter, Recursive Least Squares
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鋰離子電池有著能量密度高、自放電率低、無記憶效應及循環壽命長等優點,使其成為可攜式電子產品及電動車電力來源的主流。然而,鋰離子電池的阻抗特性會受到老化程度、操作電壓及溫度等條件的影響,形成精確估測充電狀態(SOC)和健康狀態(SOH)等之挑戰。因此,本研究提出以無跡卡爾曼濾波器(UKF)結合適應性遞迴最小平方法(RLS),同步達成電池阻抗參數及狀態之即時估測。具體來說,透過無跡卡爾曼濾波器估測電池充電狀態(SOC)、電壓、溫度及串聯電阻值,並以適應性遞迴最小平方法估測電容值等電池阻抗參數,即時更新卡爾曼濾波器中之模型參數。最後,分別以模擬和實驗驗證所提出的估測法則,使用三種不同老化程度之鋰離子電池在多種充放電行程下進行測試。結果顯示,所提出的估測法則,在不同老化程度及各種操作條件下,所達成的最大電壓誤差小於0.05 V,最大溫度誤差小於0.16 ℃,且參數估測準確率皆大於90 %。而由於所提出之估測法則能達成無跡卡爾曼濾波器中參數之即時線上更新,可預期在不同鋰離子電池的應用上皆有良好的移植性。


The lithium-ion battery has become the main power source for the portable electronic devices and electric vehicles (EVs) due to its advantages of high energy density, low self-discharge rate, zero to minimal memory effect and long cycle life. The impedance characteristics of lithium-ion batteries, however, depend heavily on the aging condition, operating voltage and temperature. As a result, accurate estimation of the battery states such as the state of charge (SOC) and state of health (SOH) remains a challenging task. In this thesis, the unscented Kalman filter (UKF) is integrated with the recursive least square (RLS) method to simultaneously achieve real-time estimation of the impedance parameters and battery states. Specifically, the UKF is used to estimate SOC, voltages, temperature and series resistance, whereas the RLS is employed for online estimation of the other impedance parameters, such as the capacitance, which are then used to update the parameters in the UKF. Finally, the proposed algorithm is examined, via both simulation and experiment, on batteries of three different aging conditions using various charging and discharging cycles. The results show that, under various aging and operating conditions, the proposed estimation algorithm achieves maximum estimate errors less than 0.05 V and 0.16 ℃ in voltage and temperature respectively, and the accuracy of parameter estimation is higher than 90 %. Since the parameters in the UKF are updated online, the propose algorithm is expected to attain desirable portability across different lithium-ion batteries.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.2.1 等效電路模型文獻回顧 3 1.2.2 熱效應文獻回顧 4 1.2.3 老化效應文獻回顧 5 1.2.4估測方法 5 1.3 研究目的 7 1.4 論文架構 7 第二章 實驗設備與軟體 8 2.1 元件介紹 8 2.1.1 鋰離子電池介紹 8 2.1.2 鋰離子電池原理 9 2.2 硬體設備 12 2.2.1 交流阻抗分析儀 13 2.2.2 可程式直流電源供應器 15 2.2.3 直流電子負載機 17 2.2.4 可程式恆溫試驗機 19 2.2.5 霍爾效應傳感器 20 2.2.6 電阻式溫度感測器 21 2.2.7 數據擷取系統 22 2.3 實驗設備軟體 24 2.3.1 MATLAB 24 2.3.2 Simulink 24 2.3.3 Simulink Real-Time 25 第三章 鋰離子電池模型 26 3.1 交流阻抗分析法 26 3.2 鋰離子電池等效電路模型 31 3.2.1中頻ZARC元件 32 3.2.2 低頻Warburg元件 35 3.2.3 鋰離子電池完整等效電路 37 3.2.4 鋰離子電池簡化等效電路 38 3.3 鋰離子電池之熱動態效應模型 41 3.3.1 鋰離子電池熱動態模型參數鑑別 42 3.4 鋰離子電池加速老化實驗 44 第四章 估測方法介紹 53 4.1 卡爾曼濾波器 55 4.2 無跡卡爾曼濾波器 62 4.3 鋰離子電池離散方程式 67 4.4 最小平方法 70 4.5 遞迴最小平方法 72 第五章 模擬及實驗結果 77 5.1 模擬結果 77 5.1.1 固定週期充放電行程 80 5.1.1.1 電池A 80 5.1.1.2 電池B 83 5.1.1.3 電池C 86 5.1.2 NYCC駕駛行程 89 5.1.2.1 電池A 89 5.1.2.2 電池B 92 5.1.2.3 電池C 95 5.2 實驗結果(Ts = 0.01s) 98 5.2.1 2A充電行程 101 5.2.2 固定週期充放電行程 106 5.2.3 正弦波充放電行程 111 5.2.4 Chirp充放電行程 116 5.2.5 NYCC駕駛行程 121 5.3 實驗結果(Ts = 0.1s) 126 5.3.1 固定週期充放電行程 127 5.3.1.1 電池A 127 5.3.1.2 電池B 132 5.3.1.3 電池C 137 5.3.2 NYCC駕駛行程 142 5.3.2.1 電池A 142 5.3.2.2 電池B 147 5.3.2.3 電池C 152 第六章 結果與未來展望 157 6.1結論 157 6.2未來展望 160 參考文獻 166 附錄 167 A參數表 168 B老化參數表 168

[1] V. Beggi, L. Loisel, and X.-T. Nguyen, Microgrid in USTH campus : Architecture and Power Management Strategies. PhD thesis, 07 2018.
[2] W. Gu and C. Wang, “Thermal-electrochemical modeling of battery systems,” Journal
of The Electrochemical Society, vol. 147, no. 8, p. 2910, 2000.
[3] S. Rodrigues, N. Munichandraiah, and A. Shukla, “A review of state-of-charge indication of batteries by means of ac impedance measurements,” Journal of power Sources,vol. 87, no. 1-2, pp. 12–20, 2000.
[4] S. Buller, Impedance based simulation models for energy storage devices in advanced automotive power systems. Shaker, 2003.
[5] M. Dubarry, N. Vuillaume, and B. Y. Liaw, “From single cell model to battery pack
simulation for li-ion batteries,” Journal of Power Sources, vol. 186, no. 2, pp. 500–507,2009.
[6] D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczka-Guth, and D. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy.ii: Modelling,” Journal of Power Sources, vol. 196, no. 12, pp. 5349–5356, 2011.
[7] J. Yang, Y. Cai, C. Pan, and C. Mi, “A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition,”Applied Energy, vol. 254, p. 113726, 2019.
[8] K. Onda, T. Ohshima, M. Nakayama, K. Fukuda, and T. Araki, “Thermal behavior of
small lithium-ion battery during rapid charge and discharge cycles,” Journal of Power
sources, vol. 158, no. 1, pp. 535–542, 2006.
[9] D. H. Jeon and S. M. Baek, “Thermal modeling of cylindrical lithium ion battery during discharge cycle,” Energy Conversion and Management, vol. 52, no. 8-9, pp. 2973–2981,2011.
[10] J. Gomez, R. Nelson, E. E. Kalu, M. H. Weatherspoon, and J. P. Zheng, “Equivalent circuit model parameters of a high-power li-ion battery: Thermal and state of charge effects,” Journal of Power Sources, vol. 196, no. 10, pp. 4826–4831, 2011.
[11] F. Jiang, P. Peng, and Y. Sun, “Thermal analyses of lifepo4/graphite battery discharge processes,” Journal of power sources, vol. 243, pp. 181–194, 2013.
[12] O. Bohlen, J. Kowal, and D. U. Sauer, “Ageing behaviour of electrochemical double layer capacitors: Part i. experimental study and ageing model,” Journal of power sources, vol. 172, no. 1, pp. 468–475, 2007.
[13] O. Bohlen, J. Kowal, and D. U. Sauer, “Ageing behaviour of electrochemical double layer capacitors: Part ii. lifetime simulation model for dynamic applications,” Journal of Power Sources, vol. 173, no. 1, pp. 626–632, 2007.
[14] Y. Zhang and C.-Y. Wang, “Cycle-life characterization of automotive lithium-ion batteries with linio2 cathode,” Journal of the Electrochemical Society, vol. 156, no. 7,p. A527, 2009.
[15] M. Ecker, J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust, P. Dechent, and D. U. Sauer, “Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data,” Journal of Power Sources, vol. 215, pp. 248–257, 2012.
[16] V. Muenzel, A. F. Hollenkamp, A. I. Bhatt, J. de Hoog, M. Brazil, D. A. Thomas, and I. Mareels, “A comparative testing study of commercial 18650-format lithium-ion battery cells,” Journal of The Electrochemical Society, vol. 162, no. 8, p. A1592, 2015.
[17] Y. Gao, J. Jiang, C. Zhang, W. Zhang, Z. Ma, and Y. Jiang, “Lithium-ion battery aging mechanisms and life model under different charging stresses,” Journal of Power
Sources, vol. 356, pp. 103–114, 2017.
[18] K. W. E. Cheng, B. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-management system (bms) and soc development for electrical vehicles,” IEEE transactions on vehicular technology, vol. 60, no. 1, pp. 76–88, 2010.
[19] Z. Chen, Y. Fu, and C. C. Mi, “State of charge estimation of lithium-ion batteries in electric drive vehicles using extended kalman filtering,” IEEE Transactions on Vehicular Technology, vol. 62, no. 3, pp. 1020–1030, 2012.
[20] B. Xia, C. Chen, Y. Tian, W. Sun, Z. Xu, and W. Zheng, “A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer,” Journal of power sources, vol. 270, pp. 359–366, 2014.
[21] J. Zhang, Y. Wei, and H. Qi, “State of charge estimation of lifepo4 batteries based on online parameter identification,” Applied Mathematical Modelling, vol. 40, no. 11-12, pp. 6040–6050, 2016.
[22] W. Li, L. Liang, W. Liu, and X. Wu, “State of charge estimation of lithium-ion batteries using a discrete-time nonlinear observer,” IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 8557–8565, 2017.
[23] M. A. Hannan, M. H. Lipu, A. Hussain, and A. Mohamed, “A review of lithium-ion
battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations,” Renewable and Sustainable Energy Reviews,vol. 78, pp. 834–854, 2017.
[24] N.-T. Tran, A. B. Khan, T.-T. Nguyen, D.-W. Kim, and W. Choi, “Soc estimation of
multiple lithium-ion battery cells in a module using a nonlinear state observer and online parameter estimation,” Energies, vol. 11, no. 7, p. 1620, 2018.
[25] 黃可龍、王兆翔、劉素琴編著、馬振基校訂, 鋰離子電池原理與技術Lithium Ion
Batteries Principles and Key Technologies. 五南, 2014.
[26] P. Verma, P. Maire, and P. Novák, “A review of the features and analyses of the
solid electrolyte interphase in li-ion batteries,” Electrochimica Acta, vol. 55, no. 22, pp. 6332–6341, 2010.
[27] N. L. Le and S. P. Nunes, “Materials and membrane technologies for water and energy sustainability,” Sustainable Materials and Technologies, vol. 7, pp. 1–28, 2016.
[28] Zahner, Thales/IM6 Manual. Zahner, Kronach, Germany, 2021.
[29] 石良臣, MATLAB/Simulink 系統仿真超級學習手冊. 人民郵電出版社, 2019.
[30] A. A. Mohamed and D. M. Ali, “Creating real-time operation system based on xpc target kernel,” International Journal of Recent Technology and Engineering, vol. 2, 2013.
[31] P. J. Mosterman, S. Prabhu, A. Dowd, J. Glass, T. Erkkinen, J. Kluza, and R. Shenoy, “Embedded real-time control via matlab, simulink, and xpc target,” in Handbook of networked and embedded control systems, pp. 419–446, Springer, 2005.
[32] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, 2018.
[33] P. Mauracher, Modellbildung und verbundoptimierung bei elektrostrassenfahrzeugen. Verlag der Augustinus-Buchh., 1996.
[34] 李根, 以無跡型卡爾曼濾波器為基礎實現鋰離子電池充電狀態及溫度之及時估
測. 碩士論文, 106 年,台北.
[35] 陳璟安, 含熱效應之鋰離子電池等效電路模型. 碩士論文, 106 年,台北.
[36] 許碩祐, 利用無跡卡爾曼濾波器實現鋰離子電池充電狀態、溫度、健康狀態及剩
餘壽命之即時估測. 碩士論文, 109 年,台北.
[37] P. Keil, S. F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R. C. Karl, and A. Jossen, “Calendar aging of lithium-ion batteries,” Journal of The Electrochemical Society, vol. 163, no. 9, p. A1872, 2016.
[38] G. L. Smith, S. F. Schmidt, and L. A. McGee, Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle. National Aeronautics and Space Administration, 1962.
[39] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear
systems,” in Signal processing, sensor fusion, and target recognition VI, vol. 3068,
pp. 182–193, International Society for Optics and Photonics, 1997.
[40] M. S. Grewal and A. P. Andrews, Kalman filtering: Theory and Practice with MATLAB. John Wiley & Sons, 2014.
[41] 金學波, Kalman 濾波器理論與應用:基於MATLAB 實現. 科學出版社, 2016.
[42] 黄小平,王岩, 卡爾曼濾波原理及應用:MATLAB 仿真. 北京:電子工業出版社,
2015.
[43] 王衍凱, 以擴張型卡爾曼濾波器為基礎之感應馬達無感測控制及定子轉子阻抗估
測. 碩士論文, 99 年,台北.
[44] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach for filtering nonlinear systems,” in Proceedings of 1995 American Control Conference-ACC’95, vol. 3, pp. 1628–1632, IEEE, 1995.
[45] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.
[46] S. J. Julier, “The spherical simplex unscented transformation,” in Proceedings of the 2003 American Control Conference, 2003., vol. 3, pp. 2430–2434, IEEE, 2003.
[47] 黃安橋, 適應性控制. 講義, 109 年,台北.

無法下載圖示 全文公開日期 2024/10/08 (校內網路)
全文公開日期 2026/10/08 (校外網路)
全文公開日期 2026/10/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE