簡易檢索 / 詳目顯示

研究生: 黃敏茜
Min-Chien Huang
論文名稱: 寡聚物(雙馬來醯亞胺/乙內醯脲)應用於鋰離子電池添加劑之研究探討
The investigation of oligomer (N,N’-bismaleimide-4,4’ diphenylmethane and Hydantoin) as the additives in lithium-ion battery
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 許榮木
Jung-Mu Shu
范國泰
Quoc-Thai Pham
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 122
中文關鍵詞: 鋰離子電池添加劑雙馬來亞醯胺乙內醯脲
外文關鍵詞: lithium-ion battery, additive, N, Nʹ-bismaleimide-4,4ʹ-diphenylmethane, Hydantoin
相關次數: 點閱:356下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩部分,第一部份利用差示掃描量熱法(DSC)以非恆溫及恆溫模
    式探討不同莫爾比的乙內醯脲/雙馬來醯亞胺(BMI/HD)反應特徵峰及動力學,以
    對此反應相關的聚合動力學和機制有基本的了解,並利用自由模型法和最適化模
    型法進行反應動力學分析並獲得動力學參數,包括反應速率常數(K)、活化能
    (E)、頻率因子(A)、積分模型[g(α)]和微分模型[f(α)]描述聚合反應,並藉由
    獲得的動力學參數重建實驗數據以知其可信度。添加 HQ 於各樣品中並搭配電子
    順磁共振(EPR)可知系統有至少兩種反應機制,分別為自由基加成聚合反應、aza
    Michael 和 Michael 加成反應。藉由熱重分析(TGA)可知添加劑中含有較多的 BMI,
    其熱穩定性較高。
    第二部分則將不同莫爾比的乙內醯脲/雙馬來醯亞胺(BMI/HD)作為正極添加
    劑加入鋰離子電池中,透過循環伏安法(CV)、常/高溫充放電測試、電化學交流阻
    抗(EIS)以分析其電化學性質,並探討添加劑層對 NCM523 系統的影響。首先,
    由 SEM 影像可知含有添加劑的樣品經充放電測試後,其表面形貌與 Blank
    NCM523 不同,即可知添加劑會於充放電過程中於電極表面形成物質;其次,分
    析其電化學表現,發現 BMI/HD=2/1_0.5 %添加量的樣品於各項電化學性質方面
    皆優於1 %添加量的樣品,因此電化學性質的優劣應與添加量及 BMI 和 HD 的
    合成莫爾比有著密不可分之關係。


    Non-isothermal and isothermal polymerization kinetics of different molar ratio of
    BMI/HD are investigated by differential scanning calorimetry (DSC). The easiest way
    to establish mathematical relationships between process rate, conversion and
    temperature is determining kinetic triplet which are activation energy, preexponential factor, and models for reaction mechanism of each system by the model-free (isoconversional) and model-fitting method. The average activation energy of molar ratio 1/1 and 2/1 of BMI/HD are ca. 48.11 kJ/mol and 61.6 kJ/mol, respectively.
    It is shown that mechanism of aza-Michael, Michael addition reaction and free radical
    polymerization reaction appear in all systems by adding HQ into each system and
    coordinating with electron paramagnetic resonance (EPR). Thermal stability of two
    kinds of additives rise with increasing content of BMI which are measured by
    thermogravimetric analysis.
    To study the performance affected by adding different molar ratio of additives in
    lithium-ion battery are investigated by cyclic voltammetry (CV), room/high (55℃)
    temperature charge/discharge test and electrochemical impedance spectroscopy (EIS).
    The additive of 2/1_0.5% is the optimal one possessing the phenomenon of
    depolarization, reduced kinetic resistance and improved discharge capacity compared
    to others, so speculate that all properties significantly are influenced by the isolation additive layer on cathode active materials and the level of additive. Furthermore, it can be verified that the formation of additive layer during charge/discharge through comparing the difference between the image of the surface morphology of the sample with additive and the blank sample by scanning electron microscope (SEM).

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1. 研究背景 1 1.2. 安全問題起因和研究動機 3 第二章 文獻回顧 5 2.1 鋰離子電池正極添加劑之保護 5 2.2. 寡聚物添加劑聚合反應類型 14 2.2.1.自由基聚合(Free radical polymerization) 15 2.2.2. Aza-Michael and Michael addition reaction 17 2.3. 動力學 20 2.3.1等轉化方法動力學分析 23 2.3.2最適化模型法動力學分析 25 第三章 實驗藥品、儀器及方法 27 3.1 實驗藥品 27 3.2 實驗儀器 28 3.3.實驗方法 29 3.3.1 DSC樣品製備 29 3.3.2 EPR樣品製備 31 3.3.3 LIVING@添加劑製備 31 3.3.4 電極漿料製備 32 3.3.5 電極極片製備 33 3.3.6 CR2032鈕扣型電池組裝 34 第四章 結果與討論 35 4.1. Living@熱化學分析、Living@動力學分析 35 4.1.1. BMI/HD = 1/1及BMI/HD = 2/1(莫爾比)非恆溫動力學分析 35 4.1.2. BMI/HD = 1/1及BMI/HD = 2/1(莫爾比) 非恆溫自由模型法(Model Free Method) 38 4.1.3.BMI/HD = 1/1及BMI/HD = 2/1(莫爾比)非恆溫最適化模型法(Model Fitting Method) 42 4.1.4.BMI/HD = 1/1及BMI/HD = 2/1(莫爾比)非恆溫重建實驗數據 (Reconstruct) 45 4.1.5. BMI/HD = 1/1 及BMI/HD = 2/1(莫爾比)恆溫動力學分析 47 4.1.6. BMI/HD = 1/1 及BMI/HD = 2/1(莫爾比)恆溫自由模型法(Model Free Method) 50 4.1.7. BMI/HD = 1/1 及BMI/HD = 2/1(莫爾比)恆溫最適化模型法(Model Fitting Method) 55 4.1.8.BMI/HD = 1/1及BMI/HD = 2/1(莫爾比)恆溫重建實驗數據 (Reconstruct) 60 4.1.9.BMI/HD = 1/1及BMI/HD = 2/1(莫爾比)非恆溫和恆溫動力學參數 61 4.2. 抑制劑(HQ)反應機制分析 63 4.3. 電子自旋共振(EPR)反應機制分析 65 4.4. 熱重分析(TGA) 66 4.5. 循環伏安法(CV)分析 68 4.6. 常溫充放電及循環壽命測試 77 4.6.1. 常溫充放電測試(第1圈) 77 4.6.2. 常溫充放電測試(第1~50圈) 79 4.6.3. 常溫循環壽命測試 80 4.7. 常溫電化學交流阻抗圖譜分析 82 4.7.1. Blank NCM523常溫交流阻抗分析 82 4.7.2.LIVING@常溫交流阻抗分析 84 4.8. 倍率性能 87 4.9.高溫(55℃)充放電及循環壽命測試 88 4.9.1.高溫充放電測試(第11~60圈) 88 4.9.2.高溫循環壽命測試 90 4.10. 高溫(55 ℃)電化學交流阻抗圖譜分析 91 4.11. 場發射掃描式電子顯微鏡 94 第五章 結論 96 參考文獻 98

    [1] H.D.Yoo, E. Markevich., G. Salitra, D.Sharon, D.Aurbach, On the challenge of developing advanced technologies for electrochemical energy storage and conversion, Volume 17, Issue 3, April 2014, Pages 110-121
    [2] J. T. Xu, S. X. Dou, H. K. Liu, L. M. Dai, Cathode materials for next generation
    lithium ion batteries, Nano Energy, 2013 2 439-442
    [3] C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries,
    [4] N. Bensalah, H. Dawoud, Review on Synthesis, Characterizations and Electrochemical Properties of Cathode Materials for Lithium Ion Batteries, Journal of Material Science & Engineering, 2016 5
    [5] S. K. Jung, H. K. Gwon, J. Y. Hong, K. Y. Park, D. H. Seo, H. Y, Kim, J. S. Hyun, W. Y. Yang, K. S. Kang, Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries, Adv. Energy Mater.,
    2014 4 1300787
    [6] S. Franger, F. L. Cras, C. Bourbon, H. Rouault, Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties, Journal of Power Sources, 2003 119-121 252-257
    [7] D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. L. Peng, R. A. Huggins, Y. Cui, Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes, Nano Letters, 2008 8 3948-3952
    [8] 王丁,鋰離子電池高電壓三元正極材料的合成與改性,北京:冶金工業出版社,2019. 3
    [9] H. J. Noh, S. j. Youn, C. S. Yoon, Y. K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x =1/3, 0.5, 0.6, 0.7, 0.8 and 128 0.85) cathode material for lithium-ion batteries, Journal of Power Sources, 2013 233 231-230
    [10] H. H. Sun, W. C. Choi, J. K. Lee, I. H. Oh, H. G. Jung, Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio, Journal of Power Sources, 2015 275 877-883
    [11] W. S. Cho, S. M. Kim, J. H. Song, T. E. Yim, S. G. Woo, K. W. Lee, J. S. Kim, Y. J. Kim, Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating, Journal of Power Sources, 2015 282 45-50
    [12] S. M. Bak, E. Y Hu, Y. N. Zhou, X. Q. Yu, S. D. Senanayake, S. J. Cho, K. B. Kim, K. Y . Chung, X. Q. Yang, K. W. Nam, Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time Resolved XRD and Mass Spectroscopy, ACS Appl. Mater. Interfaces, 2014
    [13] F. Schipper, E. M. Erickson, C. Erk, J. Y . Shin, F. F. Chesneau, D. Aurbach, Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes, Journal of The Electrochemical Society, 2017 164 A6220-A6228
    [14] S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of Power Sources, 2014 257 421-443
    [15] N. A. Kaskhedikar, J. Maier, Lithium Storage in Carbon Nanostructures, Adv. Mater., 2009 21 2664-2680.
    [16] J. R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes, Energy Environ. Sci., 2011 4 56-72.
    [17] H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 2012 7 414-429.129
    [18] K. Amine, I. Belharouak, Z. H. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, Y. K. Sun, Nanostructured Anode Material for High-Power Battery System in Electric Vehicles, Adv. Mater., 2010 22 3052-3057
    [19] Z. Y. Wang, L. Zhou, X. W. Lou, Metal Oxide Hollow Nanostructures for Lithiumion Batteries, Adv. Mater., 2012 24 1903-1911
    [20] D. Barreca, M. C. Yusta, A. Gasparotto, C. Maccato, J. Morales, A. Pozza, C. Sada, L. Sanchez, E. Tondello, Cobalt Oxide Nanomaterials by Vapor-Phase Synthesis for Fast and Reversible Lithium Storage, J. Phys. Chem. C, 2010 114 10054-10060
    [21] C. Villevieille, F. Robert, P. L. Taberna, L. Bazin, P. Simonb, L. Monconduit, The good reactivity of lithium with nanostructured copper phosphide, Journal of Materials Chemistry, 2008 18 5956-5960
    [22] V. Pralong, D. C. S. Souza, K. T. Leung, L. F. Nazar, Reversible lithium uptake by CoP3 at low potential: role of the anion, Electrochemistry Communications, 2002, 4516-520
    [23] H. Senoh, H. Kageyama, T. Takeuchi, K. Nakanishi, T. Ohta, H. Sakaebe, M. Yao, T. Sakai, K. Yasuda, Gallium (III) sulfide as an active material in lithium secondary batteries, Journal of Power Sources, 2011 196 5631-5636
    [24] H. Senoh, T. Takeuchi, H. Kageyama, H. Sakaebe, M. Yao, K. Nakanishi, T. Ohta, T. Sakai, K. Yasuda, Electrochemical characteristics of aluminum sulfide for use in lithium secondary batteries, Journal of Power Sources, 2010 195 8327-8330
    [25] N. Pereira, L. Dupont, J. M. Tarascon, L. C. Klein, G. G. Amatucci, Electrochemistry of Cu3N with Lithium A Complex System with Parallel Processes, J. Electrochem. Soc., 2003 150 A1273-A1280
    [26] B. Das, M. V. Reddy, P. Malar, T. Osipowicz, G. V. S. Rao, B. V. R. Chowdari, Nanoflake CoN as a high capacity anode for Li-ion batteries, Solid State Ionics, 2009 130 180 1061-1068
    [27] H. S. Jeong, S. Y. Lee, Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries, Journal of Power Sources, 2011 196 6716-6722
    [28] M. H. Ryou, Y. M. Lee, J. K. Park, J. W. Choi, Mussel-Inspired PolydopamineTreated Polyethylene Separators for High-Power Li-Ion Batteries, Adv. Mater., 2011 23 3066-3070
    [29] G. Venugopal, J. Moore, J. Howard, S. Pendalwar, Characterization of microporous separators for lithium-ion batteries, Journal of Power Sources, 1999 77 34-41
    [30] F. J. Jiang, Y. Nie, L. Yin, Y. Feng, Q. C. Yua, C. Y. Zhong, Core–shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries, Journal of Membrane Science, 2016 510 1-9
    [31] Q.T.Pham, F.E Yu, J.M.Hsu, J.P.Pan, T.H. Wang, C.S. Chern,’’Polymerization kinetics of reactive N,Nʹ-bismaleimide-4,4ʹ-diphenylmethane/barbituric acid based microgel particles,’’Thermochimica Acta, Volume 597,10 December 2014, Page1-7
    [32] F.E. Yu, S.C. Jiang, H.Y.Ho1, J.M. Hsu, C.S.Chern’’How do hyperbranched polyimides from in polymerizations of N,Nʹ-bismaleimide-4,4ʹ-diphenylmethane with barbituric acid?’’, Journal of Polymer Research, 10 October 2015, 22(10)8p
    [33] Q.T. Pham, J.M. Hsu, F.M. Wang, M.P. Chen, C.S. Chern ‘‘Isothermal polymerization kinetics of N,Nʹ-bismaleimide-4,4ʹ-diphenylmethane with cyanuric acid’’ Thermochimica Acta, Volume 634, 20 June 2016, Pages 31-37
    [34] Q.T. Pham, M.C. Hsu, C.S.Chern’’Kinetics of isothermal miniemulsion polymerization of 1,6-hexanediol diacrylate’’Thermochimica Acta, Volume 646, 20, June 2016, Pages 31-37
    [35] A. Khawam, D.R. Flanagan, Solid-State Kinetics Models: Basic and Mathematical Fundamentals, J.Phys. Chem. B 2006, 110, 17315-17328
    [36] S. Vyazovkina, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu,
    138 N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta, 2011 520 1-19
    [37] K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018)
    [38] F. M. Wang, S. C. Lo, C.S. Cheng, J.H. Chen, B.J. Hwang, H.C. Wu, Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery, Journal of Membrane Science, 2011 368 165-170
    [39] C. C. Lin, H. C. Wu, J. P. Pan, C. Y . Su, T. H. Wang, H. S. Sheu, N. L. Wu, Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode, Electrochimica Acta, 2013 101 11-17
    [40] F. M. Wang, T. Alemu, N. H. Yeh, X. C. Wang, Y. W. Lin, C. C. Hsu, Y. J. Chang, C. H. Liu, C. I. Chuang, L. H. Hsiao, J. M. Chen, S. C. Haw, W. L. Chen, Q. T. Pham, C. H. Su, Interface Interaction Behavior of Self-Terminated Oligomer Electrode Additives for a Ni-Rich Layer Cathode in Lithium-Ion Batteries: Voltage and Temperature Effects, ACS Appl. Mater. Interfaces, 2019
    [41] J. P. Pan, G. Y . Shiau, S. S. Lin, K. M. Chen, Effect of Barbituric Acid on the SelfPolymerization Reaction of Bismaleimides, Journal of Applied Polymer Science, 1992 45 103-109 136
    [42] Q. T. Pham, F. E. Yu, J. M. Hsu, J. P. Pan, T. H. Wang, C. S. Chern, Polymerization kinetics of reactive N,Nʹ-bismaleimide-4,4ʹ-diphenylmethane/barbituric acid based microgel particles, Thermochimica Acta, 2014 597 1-7
    [43] Q. T. Pham, J. M. Hsu, F. M. Wang, M. P. Chen, C. S. Chern, Isothermal polymerization kinetics of N,Nʹ -bismaleimide-4,4ʹ-diphenylmethane with cyanuric acid, Thermochimica Acta, 2017 647 30-35
    [44] A. Nacai, A. Takahashi, M. Suzuki, J. Katagiri, A. Mukoh, Thermal Behavior and Cured Products of Mixtures of Two Different Bismaleimides, Journal of Applied Polymer Science, 1990 41 2241-2250
    [45] L. R. Dix, J. R. Ebdon, N. J. Flint, P. Hodges, R. O’Dell, Chain Extension and Crosslinking of Telechelic Oligomers - I. Michael Additions of Bisamines to Bismaleimides and Bis(acetylene ketone)s, European Polymer Journal, 1995 31 641 652.
    [46] H. D. Stenzwnberger, K. U. Heinen, D. O. Hummel, Thermal Degradation of
    Poly(bismaleimides), Journal of Polymer Science, 1976 14 2911-2925
    [47] 陳奕升,新型態鋰離子電池添加劑 (馬來醯亞胺/雙馬來醯亞胺)研究探討,國立台灣科技大學化學工程系碩士學位論文,民國108年
    [48] H. L. Su, J. M. Hsu, J. P. Pan, T. H. Wang, F. E. Yu, C. S. Chern, Kinetic and Structural Studies of the Polymerization of N,Nʹ-bismaleimide-4,4ʹ-diphenylmethane With Barbituric Acid, Polymer Engineering & Science, 2011 51 1188
    [49] Y. Gnanou, M. Fontanille, ORGANIC AND PHYSICAL CHEMISTRY OF POLYMERS, John Wiley & Sons, Inc., 2008
    [50] B. D. Mather, K. Viswanathan, K. M. Miller, T. E. Long, Michael addition reactions in macromolecular design for emerging technologies, Progress in Polymer Science, 2006 31 487-531
    [51] Q.T. Pham, F.E.Yu, J.M. Hsu, C.H. Chiang, C.S.Chern, Kinetics of polymerization of N,N-bismaleimide-4,4-diphenylmethane, barbituric acid andaminopropyl phenylsiloxane oligomer, Journal of the Taiwan Institute of Chemical Engineers 67 (2016) 88–97
    [52] C.R. Birkl, M.R. Roberts, E.M.Turk, P.G. Bruce, D.A.Howey, Degradation diagnostics for lithium ion cells, Journal of Power Sources, 2017, 341, 373-386
    [53] Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Nanomaterials for energy conversion and storage, Chem. Soc. Rev., 2013, 42, 3127
    [54] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium
    batteries, Nature, 2001 414
    [55] Q.T. Pham, J.M. Hsu, W.J. Shao, Y.X. Zhan, F.M. Wang, C.S. Chern, Mechanisms and kinetics of non-isothermal polymerization of N, N′bismaleimide-4,4′-diphenylmethane with 1,3-dimethylbarbituric acid, Thermochimica Acta 658 (2017) 31–37
    [56] Q.T. Pham, Y.X. Zhana, F.M. Wang, C.S. Chern, Mechanisms and kinetics of non-isothermal polymerization of N, N′bismaleimide-4,4′-diphenylmethane with barbituric acid in dimethyl sulfoxide, Thermochimica Acta 676 (2019) 139–144
    [57] F. Larsson, B.E. Mellander, Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells, Journal of The Electrochemical Society, 2014 161 A1611-A1617
    [58] D. C. Wu, Y . Liu, C. B. He, T. S. Chung, S. T. Goh, Effects of Chemistries of Trifunctional Amines on Mechanisms of Michael Addition Polymerizations with Diacrylates, Macromolecules, 2004 37 6763-6770
    [59] J. P. Pan, G. Y . Shiau, S. S. Lin, K. M. Chen, Effect of Barbituric Acid on the Self
    Polymerization Reaction of Bismaleimides, Journal of Applied Polymer Science, 1992
    45 103-109 136
    [60] Q. T. Pham, F. E. Yu, J. M. Hsu, J. P. Pan, T. H. Wang, C. S. Chern, Polymerization
    kinetics of reactive N,Nʹ-bismaleimide-4,4ʹ-diphenylmethane/barbituric acid based
    microgel particles, Thermochimica Acta, 2014 597 1-7
    [61] Q. T. Pham, J. M. Hsu, F. M. Wang, M. P. Chen, C. S. Chern, Isothermal
    polymerization kinetics of N,Nʹ -bismaleimide-4,4ʹ-diphenylmethane with cyanuric
    acid, Thermochimica Acta, 2017 647 30-35
    [62] A. Nacai, A. Takahashi, M. Suzuki, J. Katagiri, A. Mukoh, Thermal Behavior and
    Cured Products of Mixtures of Two Different Bismaleimides, Journal of Applied
    Polymer Science, 1990 41 2241-2250
    [63] L. R. Dix, J. R. Ebdon, N. J. Flint, P. Hodges, R. O’Dell, Chain Extension and
    Crosslinking of Telechelic Oligomers - I. Michael Additions of Bisamines to
    Bismaleimides and Bis(acetylene ketone)s, European Polymer Journal, 1995 31 641
    652.
    [64] H. D. Stenzwnberger, K. U. Heinen, D. O. Hummel, Thermal Degradation of
    Poly(bismaleimides), Journal of Polymer Science, 1976 14 2911-2925
    [65] M.E. Brown, Introduction to Thermal Analysis, 2nd ed., Kluwer, Dodrecht, 2001.
    [66] S. Vyazovkin, The Handbook of Thermal Analysis & Calorimetry, in: M.E. Brown, P.K. Gallagher (Eds.), Recent Advances, Techniques and Applications, vol. 5, Elsevier, 2008, p. 503.
    [67] S. Vyazovkin, N. Sbirrazzuoli, Isoconversional kinetic analysis of thermally stimulated processes in polymers, Macromol. Rapid Commun. 27 (2006) 1515–1532
    [68] H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci., Part C 6 (1964) 183–195.
    [69] A.I. Lesnikovich, S.V. Levchik, A method of finding invariant values of kinetic parameters, J. Therm. Anal. 27 (1983) 89–93
    [70] M.J. Starink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods, Thermochim. Acta 404 (2003) 163–176.
    [71] P.M.Madhysudanan, K. Krishnan, K.N. Ninan, New equations for kinetic analysis of non-isothermal reactions, Thermochim. Acta 221 (1993) 13–21.
    [72] W. Tang, Y. Liu, H. Zhang, C. Wang, New approximate formula for Arrhenius temperature integral, Thermochim. Acta 408 (2003) 39–43.
    [73] P. Budrugeac, J.M. Criado, F.J. Gotor, J. Malek, L.A. Perez-Maqueda, E. Segal, On the evaluation of the nonisothermal kinetic parameters of (GeS2)(0.3)(Sb2S3)(0.7) crystallization using the IKP method, Int. J. Chem. Kinet. 36 (2004) 309–315.
    [74] P. Budrugeac, The Kissinger law and the IKP method for evaluating the nonisothermal kinetic parameters, J. Therm. Anal. Calorim. 89 (2007) 143–151.
    [75] S. Vyazovkin, The Handbook of Thermal Analysis & Calorimetry, in: M.E. Brown, P.K. Gallagher (Eds.), Recent Advances, Techniques and Applications, vol. 5, Elsevier, 2008, p. 503.
    [76] S. Vyazovkin, A unified approach to kinetic processing of nonisothermal data, Int. J. Chem. Kinet. 28 (1996) 95–101.
    [77] H. Konishi, T. Yuasa, M. Yoshikawa, Thermal stability of Li1−yNixMn(1−x)/2Co(1−x)/2O2 layer-structured cathode materials used in Li-ion batteries, Journal of Power Sources 196 (2011) 6884.
    [78] M. Dahbi, I. Saadoune, T. Gustafsson, K. Edström, Effect of manganese on the structural and thermal stability of Li0.3Ni0.7–yCo0.3–yMn2yO2 electrode materials (y = 0 and 0.05), Solid State Ionics 203 (2011) 37.
    [79] K.W. Nam, W.S. Yoon, X.Q. Yang, Structural changes and thermal stability of charged LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries studied by time-resolved XRD, Journal of Power Sources 189 (2009) 515
    [80] H. Maleki, G. Deng, A. Anani, J. Howard, Thermal stability studies of Li-ion cells and components articles, Journal of the Electrochemical Society 146 (1999) 3224.
    [81] 陳平、熊需海,含芳雜環結構雙馬來亞醯胺樹脂. 北京:化學工業出版社,2016
    [82] 李育德,高分子導論,新竹黎明書店經銷,1983
    [83] Q. T. Pham, J. M. Hsu, J. P. Pan, T. H. Wang, C. S. Chern, Non-Isothermal Degradation Kinetics of N,N0-Bismaleimide-4,40diphenylmethane/Barbituric Acid Based Polymers in the Presence of Hydroquinone, Journal of applied polymer science 2013

    無法下載圖示 全文公開日期 2025/07/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE