簡易檢索 / 詳目顯示

研究生: 黃新揚
M10902012
論文名稱: 基於Wi-Fi定位的多樓層自主參數校正行人航位推算系統
A Wi-Fi Positioning-Based Multi-Floor Autonomous Parameter Rectified Pedestrian Dead Reckoning System
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 方文賢
Wen-Hsien Fang
陳郁堂
Yie-Tarng Chen
陳省隆
Hsing-Lung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 50
中文關鍵詞: 室內定位Wi-Fi指紋定位主成分分析行人航位推算演算法校正演算法累積誤差
外文關鍵詞: indoor positioning, Wi-Fi, fingerprinting, Principal Component Analysis, Pedestrian Dead Reckoning, rectifying algorithm, accumulated error
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行動定位服務(Location-Based Service, LBS)已是現代生活的基本需求之一,雖然GPS在室外具有極佳的定位能力,可惜到了室內後因為訊號遮蔽導致GPS極度不穩定。為了解決室內的定位需求衍生出眾多室內定位技術(如Wi-Fi、藍芽…等),其中依照定位方式可將室內定位技術分為絕對定位與相對定位,絕對定位是根據訊號直接計算位置的離散的定位結果,而相對定位藉由前一個位置與移動狀態推測下一個位置的連續定位結果。
    如今在學校、車站等大多公共室內地區都有架設 Wi-Fi 無線存取點(Access Point, AP)供大眾連網使用,本論文藉此提出一套使用環境本身已存在Wi-Fi的絕對定位,搭配智慧型手機計算行人航位推算演算法(Pedestrian Dead Reckoning, PDR)的相對定位而成的室內定位系統。其中Wi-Fi定位使用指紋(Fingerprinting)定位法,並透過主成分分析(Principal Component Analysis, PCA)擷取主要特徵提升長期穩定度;另一方面PDR在短時間的連續定位精準度高也貼近行人移動模式,配合地圖資訊再限縮定位結果維持在合理區域。
    本系統具有節省架設新設備成本、適合廣泛應用,將兩種定位特性結合相互補足各自不足處等特點。並且提出一校正演算法藉由Wi-Fi定位向量與PDR定位向量相互判斷新的定位座標的合理性,再依照合理性使用對應的定位校正演算法校正定位座標。特別在當行人被判斷為直行時,透過向量對齊法計算新定位座標,並回授動態偏移角度給PDR面向角獲得更貼近真實的移動方向。
    經實驗表明,本論文提出的校正定位演算法在多樓層實驗中平均定位誤差為1.31公尺,相比Wi-Fi定位減少23.8%的定位誤差率,更相對以Wi-Fi切換樓層的原始PDR 減少了77.7%的定位誤差率,有效解決PDR的累積誤差問題也證明其定位精準性;同時定位誤差標準差比起Wi-Fi定位減少了46.2%的定位誤差率,證明所提方法的定位穩定性。


    Location-Based Service (LBS) is one of the basic needs in modern society. Although GPS is excellent positioning outdoors, GPS is extremely unstable indoors due to Shadow Effect. To solve the need for indoor positioning, there are plenty of indoor positioning technologies (such as Wi-Fi, Bluetooth, etc.) have been derived. According to the positioning method, indoor positioning technologies can be divided into absolute positioning and relative positioning. Absolute positioning calculates the discrete position using the signal information, while relative positioning utilizes the state of motion and the previous position to infer the following continuous position.
    Nowadays, there are Wi-Fi access points (AP) set up for the public to connect to the Internet in most public indoor areas such as schools and stations. This paper proposes an indoor positioning system based on both absolute positioning of Wi-Fi in the environments and relative positioning calculated by the Pedestrian Dead Reckoning (PDR) algorithm in smartphones. Among them, Wi-Fi positioning is computed by fingerprinting positioning method with improve long-term stability by extracting the main features using Principal Component Analysis (PCA); on the other hand, PDR which has high accuracy in continuous positioning in a short time is closer to the state of motion and is further limited by map information to keep positioning results in a reasonable area.
    This system has the advantages of saving the cost of setting up new equipment, and wide applications, and combining two positioning characteristics to complement each other's shortcomings. Besides, we propose a rectifying algorithm to detect the rationality of the new position with the Wi-Fi positioning vector and the PDR positioning vector, and then correct the position using the corresponding rectifying algorithm according to the rationality. Especially when the user is detected to move straight, the new position is calculated through the vector alignment method, and the rectified angle is fed back to PDR orientation dynamically to obtain a more realistic moving direction.
    Experiments show that the proposed method has a mean positioning error of 1.31 meters in the multi-floor experiment, which is 23.8% less than Wi-Fi positioning, 77.7% less than the original PDR with floors detected by Wi-Fi, solving the problem of accumulated error in PDR, and also proves its positioning accuracy. At the same time, the standard deviation of positioning error of the proposed method reduces by 46.2% compared with Wi-Fi positioning, which proves the positioning stability.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖表索引 VII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 章節提要 2 第2章 相關文獻 4 2.1 室內定位技術 4 2.1.1 無線網路(Wireless Fidelity, Wi-Fi) 7 2.1.2 藍牙低功耗(Bluetooth Low Energy, BLE) 7 2.1.3 超寬頻(Ultra-Wide Band, UWB) 7 2.1.4 可見光通訊(Visible Light Communication, VLC) 8 2.1.5 視覺影像定位(Vision-Based Positioning) 8 2.1.6 行人航位推算演算法(Pedestrian Dead Reckoning, PDR) 8 2.2 分類演算法 10 2.2.1 K-近鄰演算法(K Nearest Neighbor, KNN) 10 2.2.2 支持向量機(Support Vector Machine, SVM) 10 2.2.3 決策樹(Decision Tree) 11 2.3 建築資訊模型(Building Information Modeling, BIM) 11 第3章 室內定位系統設計 12 3.1 系統架構 12 3.2 離線指紋資料庫設計 12 3.2.1 資料蒐集 13 3.2.2 資料前處理(Pre-processing) 13 3.2.3 模型訓練 15 3.3 絕對定位設計 16 3.4 相對定位設計 17 3.4.1 步伐偵測 18 3.4.2 面向角計算 19 3.4.3 PDR 20 3.5 定位結果校正 21 3.5.1 定位校正演算法 21 3.5.2 定位初始化與Wi-Fi校正定位 23 3.5.3 撞牆偵測 24 第4章 實驗結果 27 4.1 實驗工具 27 4.2 實驗環境與評估方法介紹 27 4.2.1 實驗場域 27 4.2.2 實驗評估方法 28 4.2.3 實驗路線 29 4.2.4 Wi-Fi定位座標點 30 4.3 離線實驗結果 30 4.3.1 不同資料維度訓練模型結果 30 4.3.2 不同模型訓練結果 31 4.4 線上實驗結果 32 4.4.1 單樓層PDR校正結果 32 4.4.2 多樓層校正結果 33 第5章 結論 36 參考文獻References 37

    [1] Liu, H., H. Darabi, P. Banerjee, and J. Liu. 2007. "Survey of Wireless Indoor Positioning Techniques and Systems." IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37 (6):1067-80. doi: 10.1109/TSMCC.2007.905750.
    [2] Aust, S., R. V. Prasad, and I. G. M. M. Niemegeers. 2015. "Outdoor Long-Range WLANs: A Lesson for IEEE 802.11ah." IEEE Communications Surveys & Tutorials 17 (3):1761-75. doi: 10.1109/COMST.2015.2429311.
    [3] Nguyen, H. N., K. S. Kim, S. H. Han, J. Y. Lee, C. Kim, and S. G. Lee. 2018. "A Low-Power Interference-Tolerance Wideband Receiver for 802.11af/ah Long-Range Wi-Fi With Post-LNA Active $N$ -Path Filter." IEEE Transactions on Microwave Theory and Techniques 66 (5):2287-98. doi: 10.1109/TMTT.2018.2805341.
    [4] Liu, K., Z. Tian, Z. Li, and X. Wan. 2022. "A Non-Line-of-Sight Wireless Indoor Localization System Using Custom-Designed Radio Relay and Uniform Circular Array." IEEE Transactions on Antennas and Propagation 70 (11):11045-58. doi: 10.1109/TAP.2022.3191222.
    [5] Liu, Fen, Jing Liu, Yuqing Yin, Wenhan Wang, Donghai Hu, Pengpeng Chen, and Qiang Niu. 2020. "Survey on WiFi-based indoor positioning techniques." IET communications 14 (9):1372-83. doi: https://doi.org/10.1049/iet-com.2019.1059.
    [6] Yang, C., and H. r. Shao. 2015. "WiFi-based indoor positioning." IEEE Communications Magazine 53 (3):150-7. doi: 10.1109/MCOM.2015.7060497.
    [7] Li W., Y. Chen and M. Asif. 2016. "A Wi-Fi-based indoor positioning algorithm with mitigating the influence of NLOS," 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), 2016, pp. 520-523, doi: 10.1109/ICCSN.2016.7587212.
    [8] Wang B., X. Liu, B. Yu, R. Jia, and X. Gan. 2019. "An Improved WiFi Positioning Method Based on Fingerprint Clustering and Signal Weighted Euclidean Distance." Sensors. 19(10):2300. https://doi.org/10.3390/s19102300
    [9] Chen, C., Y. Chen, Y. Han, H. Q. Lai, and K. J. R. Liu. 2017. "Achieving Centimeter-Accuracy Indoor Localization on WiFi Platforms: A Frequency Hopping Approach." IEEE Internet of Things Journal 4 (1):111-21. doi: 10.1109/JIOT.2016.2628701.
    [10] Tian, Y., J. Wang, and Z. Zhao. 2021. "Wi-Fi Fingerprint Update for Indoor Localization via Domain Adaptation." Paper presented at the 2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS), 14-16 Dec. 2021.
    [11] Mendoza-Silva GM, P. Richter, J. Torres-Sospedra, ES. Lohan, J. Huerta Mendoza-Silva, Germán Martín, Philipp Richter, Joaquín Torres-Sospedra, Elena Simona Lohan, and Joaquín Huerta. 2018." Long-Term WiFi Fingerprinting Dataset for Research on Robust Indoor Positioning." Data 3 (1):3.
    [12] Ji, T., W. Li, X. Zhu, and M. Liu. 2022. "Survey on indoor fingerprint localization for BLE." 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), 4-6 March 2022, pp. 129-134, doi: 10.1109/ITOEC53115.2022.9734528.
    [13] Dinh, T. M. T., N. S. Duong, and K. Sandrasegaran. 2020. "Smartphone-Based Indoor Positioning Using BLE iBeacon and Reliable Lightweight Fingerprint Map." IEEE Sensors Journal 20 (17):10283-94. doi: 10.1109/JSEN.2020.2989411.
    [14] Huang, Ke, Ke He, and Xuecheng Du. 2019. "A Hybrid Method to Improve the BLE-Based Indoor Positioning in a Dense Bluetooth Environment." Sensors 19 (2):424.
    [15] Ye, H., B. Yang, Z. Long, and C. Dai. 2022. "A Method of Indoor Positioning by Signal Fitting and PDDA Algorithm Using BLE AOA Device." IEEE Sensors Journal 22 (8):7877-87. doi: 10.1109/JSEN.2022.3141739.
    [16] Dardari, D., A. Conti, U. Ferner, A. Giorgetti, and M. Z. Win. 2009. "Ranging With Ultrawide Bandwidth Signals in Multipath Environments." Proceedings of the IEEE 97 (2):404-26. doi: 10.1109/JPROC.2008.2008846.
    [17] Jiang, W., Z. Cao, B. Cai, B. Li, and J. Wang. 2021. "Indoor and Outdoor Seamless Positioning Method Using UWB Enhanced Multi-Sensor Tightly-Coupled Integration." IEEE Transactions on Vehicular Technology 70 (10):10633-45. doi: 10.1109/TVT.2021.3110325.\
    [18] Alarifi, Abdulrahman, AbdulMalik Al-Salman, Mansour Alsaleh, Ahmad Alnafessah, Suheer Al-Hadhrami, Mai A. Al-Ammar, and Hend S. Al-Khalifa. 2016. "Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances." Sensors 16 (5):707.
    [19] Matheus, L. E. M., A. B. Vieira, L. F. M. Vieira, M. A. M. Vieira, and O. Gnawali. 2019. "Visible Light Communication: Concepts, Applications and Challenges." IEEE Communications Surveys & Tutorials 21 (4):3204-37. doi: 10.1109/COMST.2019.2913348.
    [20] Zafar, F., D. Karunatilaka, and R. Parthiban. 2015. "Dimming schemes for visible light communication: the state of research." IEEE Wireless Communications 22 (2):29-35. doi: 10.1109/MWC.2015.7096282.
    [21] Jakubović, A., and J. Velagić. 2018. Image Feature Matching and Object Detection Using Brute-Force Matchers. Paper presented at the 2018 International Symposium ELMAR, 16-19 Sept. 2018.
    [22] Dong, Chuan-Zhi, Ozan Celik, F. Necati Catbas, Eugene OBrien, and Su Taylor. 2019. "A Robust Vision-Based Method for Displacement Measurement under Adverse Environmental Factors Using Spatio-Temporal Context Learning and Taylor Approximation." Sensors 19 (14):3197.
    [23] Nazarahari, M., and R. H. 2021. "40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units: Methods, lessons learned, and future challenges." Information Fusion 68:67-84. doi: https://doi.org/10.1016/j.inffus.2020.10.018.
    [24] Mahony, R., T. Hamel, and J. M. Pflimlin. 2008. "Nonlinear Complementary Filters on the Special Orthogonal Group." IEEE Transactions on Automatic Control 53 (5):1203-18. doi: 10.1109/TAC.2008.923738.
    [25] Madgwick, S. O. H., A. J. L. Harrison, and R. Vaidyanathan. 2011. Estimation of IMU and MARG orientation using a gradient descent algorithm. Paper presentedat the 2011 IEEE International Conference on Rehabilitation Robotics, 29 June-1 July 2011.
    [26] Vitali, R. V., R. S. McGinnis, and N. C. Perkins. 2021. "Robust Error-State Kalman Filter for Estimating IMU Orientation." IEEE Sensors Journal 21 (3):3561-9. doi: 10.1109/JSEN.2020.3026895.
    [27] Perez-Navarro, A. 2021. Accuracy of a single point in kNN applying error propagation theory. Paper presented at the 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov.-2 Dec. 2021.
    [28] Irsan, F. A. S., N. S. Aminah, and M. Djamal. 2022. RSSI - WIFI Based Indoor Position Tracking System Using Support Vector Machine (SVM). Paper presented at the 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 16-18 Nov. 2022.
    [29] Panja, A.K., C. Chowdhury, P. Roy, S. Mallick, S. Mondal, S. Paul, and S. Neogy. 2021. Designing a Framework for Real-Time WiFi-Based Indoor Positioning. Paper presented at the Advances in Smart Communication Technology and Information Processing, Singapore, 2021
    [30] Ma, Zhiliang, Shiyao Cai, Na Mao, Qiliang Yang, Junguo Feng, and Pengyi Wang. 2018. "Construction quality management based on a collaborative system using BIM and indoor positioning." Automation in Construction 92:35-45. doi: https://doi.org/10.1016/j.autcon.2018.03.027.
    [31] Huang, S. Y., H. Y. Huang, H. Y. Chong, J. B. Jiang, J. S. Leu, and S. Vítek. 2022. "A Directional Particle Filter-Based Multi-Floor Indoor Positioning System." IEEE Access 10:116317-25. doi: 10.1109/ACCESS.2022.3218462.
    [32] Lu, Wenxia, F. Wu, H. Zhu, and Y. Zhang. 2020. "A Step Length Estimation Model of Coefficient Self-Determined Based on Peak-Valley Detection." Journal of Sensors 2020:8818130. doi: 10.1155/2020/8818130

    無法下載圖示 全文公開日期 2028/01/18 (校內網路)
    全文公開日期 2028/01/18 (校外網路)
    全文公開日期 2028/01/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE