簡易檢索 / 詳目顯示

研究生: 蕭基昊
Chi-Hao Hsiao
論文名稱: 聚乳酸/玻璃纖維複合材料於射出成型之多品質加工參數最佳化研究
A Research on Optimization of Process Parameters for Multiple Qualities of Polylactide/Glass Fiber Composites in Injection Molding
指導教授: 黃昌群
Chang-Chiun Huang
口試委員: 郭中豐
Chung-Feng Jeffrey Kuo
湯燦泰
Tsan-Tai Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 99
中文關鍵詞: 聚乳酸玻璃纖維射出成型田口方法主成份分析法資料包絡分析法
外文關鍵詞: Polylactide, Glass fiber, Injection molding, Taguchi method, Principal component analysis, Data envelopment analysis
相關次數: 點閱:302下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主要探討聚乳酸(Polylactide)與玻璃纖維(Glass fiber)經過混煉後,製造出具有含玻璃纖維性質之功能性的複合材料。射出成型(Injection molding)製程在玻璃纖維比例、熔融溫度、射出速度、保壓壓力、保壓時間與冷卻時間不同下,對於材料機械性質之影響。實驗利用田口方法(Taguchi method)中的直交表規劃,實驗完成後得到各品質數據,經由田口方法的主效果分析與變異數分析(Analysis of variance, ANOVA)理論得到單一品質之製程最佳參數水準組合,再以主成份分析法(Principal component analysis, PCA)與資料包絡分析法(Data envelopment analysis, DEA)分別找出多重品質之製程最佳化參數水準組合。研究結果顯示,若同時考量拉伸強度、硬度、衝擊強度與彎曲強度四項多品質特性時,其由資料包絡分析法所求得之最佳條件其實驗結果較佳,分別為玻璃纖維添加20 wt.%、熔融溫度185℃、射出速度80 mm/s、保壓壓力60 MPa、保壓時間1 sec與冷卻時間15 sec,最後證實本研究所規劃之實驗流程對材料的多重品質特性能有效的提升。


    This thesis is concerned with compounding polylactide(PLA) and glass fiber(GF) to give a functional composite material with glass fiber properties. The injection molding process parameters, such as glass fiber ratio, melt temperature, injection speed, packing pressure, packing time and cooling time, generally affect mechanical properties of the composite. The orthogonal array table in Taguchi method is used to design the experiment. The optimal process conditions for single quality are obtained from the qualitative data derived from the experiment by using factor effects and analysis of variance(ANOVA) theory of Taguchi method. The optimal process parameter combination for multiple qualities is determined by principal component analysis(PCA) and data envelopment analysis(DEA), respectively. The four qualities considered in this study are the tensile strength, hardness, impact strength and bending strength. The results show that DEA yields better qualities of PLA/GF composite than PCA. For DEA, the optimal injection molding process conditions are 20 wt.% glass fiber addition, melt temperature 185℃, injection speed 80 mm/s, packing pressure 60 MPa, packing time 1 second and cooling time 15 seconds. This study effectively enhances multiple qualities of PLA/GF composite.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VIII 表索引 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 文獻探討 6 1.3.1 聚乳酸與玻璃纖維複合材料 6 1.3.2 射出成型製程 8 1.3.3 製程最佳化 10 1.4 論文架構 11 1.5 研究流程 12 第二章 實驗儀器介紹 13 2.1 射出成型 13 2.2 材料分析 15 2.2.1 熱重損失分析儀 15 2.2.2 熱示差分析儀 16 2.3 材料試片分析 17 2.3.1 落地型動態材料試驗機 17 2.3.2 蕭氏硬度計 20 2.3.3 衝擊試驗機 21 第三章 製程最佳化理論 24 3.1田口方法 24 3.1.1 直交表 24 3.1.2 訊號雜訊比 26 3.1.3 主效果分析 27 3.1.4 變異數分析 28 3.1.5 信賴區間 31 3.2 主成份分析法 32 3.2.1 主成份分析基礎 33 3.2.2 主成份分析理論 33 3.2.3 主成份分析計算 35 3.3 資料包絡分析法 36 3.3.1 資料包絡分析基礎 37 3.3.2 資料包絡分析理論 37 3.3.3 CCR投入導向模式 38 3.3.4 交叉效率分析模式 39 第四章 實驗規劃與步驟 41 4.1 實驗材料 41 4.2 材料分析 44 4.3 實驗與直交表規劃 48 第五章 實驗結果與討論 51 5.1 田口實驗數據分析 51 5.1.1拉伸實驗數據分析 51 5.1.2硬度實驗數據分析 54 5.1.3衝擊實驗數據分析 57 5.1.4彎曲實驗數據分析 60 5.2 多重品質特性分析 64 5.2.1 主成份分析法 64 5.2.2 S/N比加法模式 69 5.2.3 資料包絡分析法 69 5.2.4 S/N比加法模式 75 5.2.5 S/N比加法模式結果比較 75 5.3 確認實驗 76 第六章 結論 79 參考文獻 81   圖索引 圖1-1研究流程圖 12 圖2-1射出成型機作動之原理 13 圖2-2射出成型機 14 圖2-3熱重損失分析儀 15 圖2-4熱示差分析儀 16 圖2-5落地型動態材料試驗機 18 圖2-6三點彎曲測試模具 19 圖2-7蕭氏硬度計 20 圖2-8愛曹特衝擊試驗機 22 圖2-9衝擊試驗能量位能圖 23 圖3-1直交表示意圖 25 圖3-2二維主成份分析示意圖 34 圖4-1實驗流程 41 圖4-2 PLA/GF複合材料 42 圖4-3 PLA/10%GF複合材料型號GG-0010N之熱重損失分析圖 45 圖4-4 PLA/15%GF複合材料型號GG-0015N之熱重損失分析圖 45 圖4-5 PLA/20%GF複合材料型號GG-0020N之熱重損失分析圖 46 圖4-6 PLA/10%GF複合材料型號GG-0010N之熱示差分析圖 47 圖4-7 PLA/15%GF複合材料型號GG-0015N之熱示差分析圖 47 圖4-8 PLA/20%GF複合材料型號GG-0020N之熱示差分析圖 47 圖5-1拉伸因子回應圖 53 圖5-2硬度因子回應圖 56 圖5-3衝擊因子回應圖 59 圖5-4彎曲因子回應圖 62   表索引 表2-1落地型動態材料試驗機之規格 17 表2-2硬度測試方法 21 表3-1 L18(37)直交表 26 表4-1 PLA/GF物性表 43 表4-2聚乳酸/玻璃纖維複合材料工程產品之應用 44 表4-3射出成型機控制因子及其水準值 48 表4-4射出成型實驗因子配置表 50 表5-1 拉伸實驗數據 51 表5-2 拉伸S/N比因子回應表 52 表5-3 拉伸變異數分析表 53 表5-4 硬度實驗數據 55 表5-5 硬度S/N比因子回應表 56 表5-6 硬度變異數分析表 57 表5-7 衝擊實驗數據 58 表5-8 衝擊S/N比因子回應表 59 表5-9 衝擊變異數分析表 60 表5-10 彎曲實驗數據 61 表5-11 彎曲S/N比因子回應表 62 表5-12 彎曲變異數分析表 63 表5-13各項品質數據 64 表5-14各項品質數據正規化 65 表5-15相關係數表 66 表5-16特徵值與變異量 66 表5-17特徵向量表 66 表5-18各實驗主成份得點數 67 表5-19主成份總得點數平均值對應控制因子之水準 68 表5-20主成份分析法最佳組合S/N比加法模式 69 表5-21各項品質實驗數據平均值 70 表5-22各決策單位(DMU)之相對效率值 71 表5-23各決策單位(DMU)之最佳權重值 72 表5-24各決策單位(DMU)之效率指標及排序 73 表5-25資料包絡分析交叉效率指標排序對應控制因子之水準 74 表5-26資料包絡分析法最佳組合S/N比加法模式 75 表5-27主成份分析與資料包絡分析之S/N比加法模式結果比較 76 表5-28主成份分析最佳加工參數組合確認實驗數據 77 表5-29資料包絡分析最佳加工參數組合確認實驗數據 77 表5-30多重品質確認實驗組與單一品質最佳實驗組 78

    [1]Y. Y. Leu, Z. A. Mohd Ishak and W. S. Chow, “Mechanical thermal and morphological properties of injection molded polylactic acid/sebs-g-mah/organo-montmorillonite nanocomposites”, Journal of Applied Polymer Science, Vol. 124, No. 2, pp. 1200-1207, 2012.
    [2]P. Ma, X. Wang, B. Liu, Y. Li, S. Chen, Y. Zhang, G. Xu, “Preparation and foaming extrusion behavior of polylactide/polybutylene succinate/montmorillonoid nanocomposite”, Journal of Cellular Plastics, Vol. 48, No. 2, pp.
    191-205, 2012.
    [3]L. Shen, H. Yang, J. Ying, F. Qiao and M. Peng, “Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites”, Journal of Materials Science: Materials in Medicine, Vol. 20, No. 11, pp. 2259-2265, 2009.
    [4]A. K. Bledzki, A. Jaszkiewicz and D. Scherzer, “Mechanical properties of pla composites with man-made cellulose and abaca fibres”, Composites Part A:Applied Science and Manufacturing, Vol. 40, No. 4, pp. 404-412, 2009.
    [5]S. O. An, E. S. Lee and S. L. Noh, “A study on the cutting characteristics of glass fiber reinforced plastics with respect to tool materials and geometries”, Journal of Materials Processing Technology, Vol. 68, No. 1, pp. 60-67, 1997.
    [6]D. M. Bigg, “The impact behavior of thermoplastic sheet composites”, Journal of Reinforced Plastics and Composites, Vol. 13, No. 4, pp. 339-354, 1994.
    [7]J. Kastelic, A. Buckley, P. Hope and I. Ward, “Hydrostatic extrusion of glass reinforced and unreinforced celcon pom”, Polymer Science and Technology, Vol. 10, pp. 175-191, 1983.
    [8]A. Jaszkiewicz, A. K. Bledzki and P. Franciszczak, “Improving the mechanical performance of pla composites with natural, man-made cellulose and glass fibers - a comparison to pp counterparts”, Polimery Journal, Vol. 58, No. 6, pp. 435-442, 2013.
    [9]L. S. Turng, M. Peic and D. K. Bradley, “Process simulation and optimization for injection molding - experimental verification and field application”, Journal of Injection Molding Technology, Vol. 6, No. 2, pp. 143-155, 2002.
    [10]M. H. Chung, “Study on weld-line of abs thin-wall injection molding parts”, Chung Yuan Christian University, Department of Mechanical Engineering, 2001.
    [11]J. W. Bozzelli, J. Cardinal, B. Fierens, “Pressure loss in thin wall moldings”, Spe-Antec Society of Plastics Engineers, Vol. 1, pp. 425-428, 1997.
    [12]K. M. B. Jansen, D. J. Van Dijk and M. H. Husselman, “Effect of processing conditions on shrinkage in injection molding”, Polymer Engineering and Science, Vol. 38, No. 5, pp. 838-846, 1998.
    [13]Y. Chang, S. T. Huang, S. W. Huang, S. C. Chen, C. T. Huang, M. C. Chen and V. Yang, “Warpage management using three dimensional thickness control method in injection molding”, Chung Yuan Christian University, Department of Mechanical Engineering, 2008.
    [14]P. Shokri and N. Bhatnagar, “Effect of the Post-Filling Stage on Fiber Orientation at the Mid-Plane in Injection Molding of Reinforced Thermoplastics”, Physics Procedia, Vol. 25, No. 1, pp. 79-85, 2012.
    [15]S. Kamaruddin, Z. A. Khan and S. H. Foong, “Application of Taguchi Method in the Optimization of Injection Moulding Parameters for Manufacturing Products from Plastic Blend”, International Journal of Engineering and Technology, Vol. 2, No. 6, pp. 574-580, 2010.
    [16]S. K. Karna, R. V. Singh and R. Sahai, “Application of Taguchi Method in Indian Industry”, International Journal of Emerging Technology and Advanced Engineering, Vol. 2, No. 11, pp. 387-391, 2012.
    [17]S. J. Liu, C. H. Hsu and C. Y. Chang, “Parametric characterization of the thin-wall injection molding of thermoplastic composites”, Journal of Reinforced Plastics and Composites, Vol. 21, No. 11, pp. 1027-1041, 2002.
    [18]J. A. Ghani, I. A. Choudhury and H. H. Hassan, “Application of taguchi method in the optimization of end milling parameters”, Journal of Materials Processing Technology, Vol. 145, No. 1, pp. 84-92, 2004.
    [19]C. T. Su and L. I. Tong, “Multi-response robust design by principal component analysis”, Total Quality Management, Vol. 8, No. 6, pp. 409-416, 1997.
    [20]J. Antony, “Multi-response optimization in industrial experiments using taguchi's quality loss function and principal component analysis”, Quality and Reliability Engineering International, Vol. 16, No. 1, pp. 3-8, 2000.
    [21]J. S. Shih, Y. F. Tzeng and J. B. Yang, “Principal component analysis for multiple quality characteristics optimization of metal inert gas welding aluminum foam plate”, Materials and Design, Vol. 32, No. 3, pp. 1253-1261, 2011.
    [22]R. Jeyapaul, P. Shahabudeen and K. Krishnaiah, “Simultaneous optimization of multi-response problems in the taguchi method using genetic algorithm”, The International Journal of Advanced Manufacturing Technology, Vol. 30, No. 9-10, pp. 870-878, 2006.
    [23]A. Al-Refaie and M. D. Al-Tahat, “Solving the multi-response problem in Taguchi method by benevolent formulation in DEA”, Journal of Intelligent Manufacturing, Vol. 22, No. 4, pp. 505-521, 2011.
    [24]蘇朝墩,產品穩健設計-田口品質工程方法的介紹和應用,中華民國品質學會,2002。
    [25]李輝煌,田口方法之品質設計的原理與實務,高立圖書有限公司,2008。
    [26]薄喬萍,績效評估之資料包絡分析法,五南圖書出版公司,2005。
    [27]薄喬萍,作業研究與資料包絡分析,復文書局,2005。
    [28]中國玻璃鋼綜合信息網,RTP公司研發玻璃纖維增強PLA生物基復合材料,來源:中國制造網,2011。

    QR CODE